About this Journal Submit a Manuscript Table of Contents
International Journal of Pediatrics
Volume 2013 (2013), Article ID 972034, 9 pages
http://dx.doi.org/10.1155/2013/972034
Review Article

Management of Pediatric and Adolescent Type 2 Diabetes

Department of Pediatrics, Division of Pediatric Endocrinology, McMaster Children’s Hospital, McMaster University, 1280 Main Street West, Room 3A-57, Hamilton, ON, Canada L8S 4K1

Received 13 July 2013; Accepted 20 August 2013

Academic Editor: Namık Yaşar Özbek

Copyright © 2013 M. Constantine Samaan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. http://www.who.int/dietphysicalactivity/childhood/en/.
  2. P. Zeitler, K. Hirst, L. Pyle et al., “A clinical trial to maintain glycemic control in youth with type 2 diabetes,” The New England Journal of Medicine, vol. 366, no. 24, pp. 2247–2256, 2012. View at Publisher · View at Google Scholar
  3. M. J. Weigensberg and M. I. Goran, “Type 2 diabetes in children and adolescents,” The Lancet, vol. 373, no. 9677, pp. 1743–1744, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. M. E. Tucker, “FDA panel advises easing restrictions on rosiglitazone,” BMJ, vol. 346, Article ID f3769, 2013. View at Publisher · View at Google Scholar
  5. S. Arslanian, “Type 2 diabetes in children: clinical aspects and risk factors,” Hormone Research, vol. 57, supplement 1, pp. 19–28, 2002.
  6. T. S. Hannon, G. Rao, and S. A. Arslanian, “Childhood obesity and type 2 diabetes mellitus,” Pediatrics, vol. 116, no. 2, pp. 473–480, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. C. D. A. C. P. G. E. Committee, “Canadian Diabetes Association 2013 Clinical Practice Guidelines for the Prevention and Management of Diabetes in Canada,” Canadian Journal of Diabetes, vol. 37, supplement 1, pp. S1–S212, 2013.
  8. A. L. Rosenbloom, J. H. Silverstein, S. Amemiya, P. Zeitler, and G. J. Klingensmith, “Type 2 diabetes mellitus in the child and adolescent,” Pediatric Diabetes, vol. 9, no. 5, pp. 512–526, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Dabelea, D. J. Pettitt, K. L. Jones, and S. A. Arslanian, “Type 2 diabetes mellitus in minority children and adolescents,” Endocrinology and Metabolism Clinics of North America, vol. 28, no. 4, pp. 709–729.
  10. J. N. Wei, F. C. Sung, C. Y. Li, et al., “Low birth weight and high birth weight infants are both at an increased risk to have type 2 diabetes among schoolchildren in Taiwan,” Diabetes Care, vol. 26, no. 2, pp. 343–348, 2003.
  11. S. Shalitin, M. Abrahami, P. Lilos, and M. Phillip, “Insulin resistance and impaired glucose tolerance in obese children and adolescents referred to a tertiary-care center in Israel,” International Journal of Obesity, vol. 29, no. 6, pp. 571–578, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. M. I. Goran, R. N. Bergman, Q. Avilla, et al., “Impaired glucose tolerance and reduced beta-cell function in overweight Latino children with a positive family history of type 2 diabetes,” Journal of Clinical Endocrinology and Metabolism, vol. 89, pp. 207–212, 2004.
  13. M. Juonala, M. J. Järvisalo, N. Mäki-Torkko, M. Kähönen, J. S. A. Viikari, and O. T. Raitakari, “Risk factors identified in childhood and decreased carotid artery elasticity in adulthood: the cardiovascular risk in young finns study,” Circulation, vol. 112, no. 10, pp. 1486–1493, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. G. S. Berenson and S. R. Srnivasan, “Cardiovascular risk factors in youth with implications for aging: the Bogalusa Heart study,” Neurobiology of Aging, vol. 26, no. 3, pp. 303–307, 2005.
  15. N. Gungor, T. Hannon, I. Libman, F. Bacha, and S. Arslanian, “Type 2 diabetes mellitus in youth: the complete picture to date,” Pediatric Clinics of North America, vol. 52, no. 6, pp. 1579–1609, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Flint and S. Arslanian, “Treatment of type 2 diabetes in youth,” Diabetes Care, vol. 34, aupplement 2, pp. S177–S183, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. American Diabetes Association, “Diagnosis and classification of diabetes mellitus,” Diabetes Care, vol. 36, supplement 1, pp. S67–S74, 2013. View at Publisher · View at Google Scholar
  18. A. L. Rosenbloom, “Distinguishing type 1 and type 2 diabetes at diagnosis: what is the problem?” Pediatric Diabetes, vol. 8, no. 2, pp. 51–52, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. G. J. Klingensmith, L. Pyle, S. Arslanian, et al., “The presence of GAD and IA-2 antibodies in youth with a type 2 diabetes phenotype,” Diabetes Care, vol. 33, no. 9, pp. 1970–1975, 2010.
  20. V. Umpaichitra, M. A. Banerji, and S. Castells, “Autoantibodies in children with type 2 diabetes mellitus,” Journal of Pediatric Endocrinology and Metabolism, vol. 15, no. 1, pp. 525–530, 2002. View at Scopus
  21. T. Reinehr, E. Schober, S. Wiegand, A. Thon, and R. Holl, “β-cell autoantibodies in children with type 2 diabetes mellitus: subgroup or misclassification?” Archives of Disease in Childhood, vol. 91, no. 6, pp. 473–477, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Tfayli, F. Bacha, N. Gungor, and S. Arslanian, “Phenotypic type 2 diabetes in obese youth insulin sensitivity and secretion in islet cell antibody-negative versus -positive patients,” Diabetes, vol. 58, no. 3, pp. 738–744, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Amed, H. J. Dean, C. Panagiotopoulos, et al., “Type 2 diabetes, medication-induced diabetes, and monogenic diabetes in canadian children,” Diabetes Care, vol. 33, no. 4, pp. 786–791, 2010.
  24. T. H. Inge, M. Zeller, V. F. Garcia, and S. R. Daniels, “Surgical approach to adolescent obesity,” Adolescent Medicine Clinics, vol. 15, no. 3, pp. 429–453, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. T. H. Inge, G. Miyano, J. Bean, et al., “Reversal of type 2 diabetes mellitus and improvements in cardiovascular risk factors after surgical weight loss in adolescents,” Pediatrics, vol. 123, no. 1, pp. 214–222, 2009.
  26. S. Caprio, S. R. Daniels, A. Drewnowski et al., “Influence of race, ethnicity, and culture on childhood obesity: implications for prevention and treatment: a consensus statement of Shaping America's Health and the Obesity Society,” Diabetes Care, vol. 31, no. 11, pp. 2211–2221, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Reinehr, E. Schober, C. L. Roth, S. Wiegand, and R. Holl, “Type 2 diabetes in children and adolescents in a 2-year follow-up: insufficient adherence to diabetes centers,” Hormone Research, vol. 69, no. 2, pp. 107–113, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. American Diabetes Association, “Type 2 diabetes in children and adolescents: consensus conference report,” Diabetes Care, vol. 23, pp. 381–389, 2000.
  29. A. Ceriello and S. Colagiuri, “International Diabetes Federation guideline for management of postmeal glucose: a review of recommendations,” Diabetic Medicine, vol. 25, no. 10, pp. 1151–1156, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. IDF/ISPAD, 2011, http://www.idf.org/global-idfispad-guideline-diabetes-childhood-and-adolescence.
  31. K. C. Copeland, J. Silverstein, K. R. Moore, et al., “Management of newly diagnosed type 2 diabetes mellitus (T2DM) in children and adolescents,” Pediatrics, vol. 131, no. 2, pp. 364–382, 2013.
  32. E. S. Loghmani, “Nutrition therapy for overweight children and adolescents with type 2 diabetes,” Current Diabetes Reports, vol. 5, no. 5, pp. 385–390, 2005. View at Scopus
  33. A. L. Rosenbloom, J. H. Silverstein, S. Amemiya, P. Zeitler, and G. J. Klingensmith, “Type 2 diabetes in children and adolescents,” Pediatric Diabetes, vol. 10, no. 12, pp. 17–32, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. V. S. Malik, M. B. Schulze, and F. B. Hu, “Intake of sugar-sweetened beverages and weight gain: a systematic review,” The American Journal of Clinical Nutrition, vol. 84, no. 2, pp. 274–288, 2006. View at Scopus
  35. L. J. Gillis and O. Bar-Or, “Food away from home, sugar-sweetened drink consumption and juvenile obesity,” Journal of the American College of Nutrition, vol. 22, no. 6, pp. 539–545, 2003. View at Scopus
  36. J. McGavock, E. Sellers, and H. Dean, “Physical activity for the prevention and management of youth-onset type 2 diabetes mellitus: focus on cardiovascular complications,” Diabetes and Vascular Disease Research, vol. 4, no. 4, pp. 305–310, 2007. View at Publisher · View at Google Scholar
  37. O. Pinhas-Hamiel and P. A. Zeitler, “Weighty problem: diagnosis and treatment of type 2 diabetes in adolescents,” Diabetes Spectrum, vol. 10, no. 4, pp. 292–298, 1997.
  38. N. F. Krebs and M. S. Jacobson, “Prevention of pediatric overweight and obesity,” Pediatrics, vol. 112, no. 2, pp. 424–430, 2003.
  39. M. Foretz, S. Hébrard, J. Leclerc et al., “Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state,” Journal of Clinical Investigation, vol. 120, no. 7, pp. 2355–2369, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. P. W. Caton, N. K. Nayuni, J. Kieswich, N. Q. Khan, M. M. Yaqoob, and R. Corder, “Metformin suppresses hepatic gluconeogenesis through induction of SIRT1 and GCN5,” Journal of Endocrinology, vol. 205, no. 1, pp. 97–106, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. C. R. Sirtori and C. Pasik, “Re-evaluation of a biguanide, metformin: mechanism of action and tolerability,” Pharmacological Research, vol. 30, no. 3, pp. 187–228, 1994. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Grisouard, K. Timper, T. M. Radimerski et al., “Mechanisms of metformin action on glucose transport and metabolism in human adipocytes,” Biochemical Pharmacology, vol. 80, no. 11, pp. 1736–1745, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. B. T. Bikman, D. Zheng, D. A. Kane, et al., “Metformin improves insulin signaling in obese rats via reduced IKK-beta action in a fiber-type specific manner,” Journal of Obesity, vol. 2010, Article ID 970865, 8 pages, 2010. View at Publisher · View at Google Scholar
  44. J. M. Cacicedo, N. Yagihashi, J. F. Keaney Jr., N. B. Ruderman, and Y. Ido, “AMPK inhibits fatty acid-induced increases in NF-kappaB transactivation in cultured human umbilical vein endothelial cells,” Biochemical and Biophysical Research Communications, vol. 324, no. 4, pp. 1204–1209, 2004.
  45. N. Musi, M. F. Hirshman, J. Nygren et al., “Metformin increases AMP-activated protein-kinase activity in skeletal muscle of subjects with type 2 diabetes,” Diabetes, vol. 51, no. 7, pp. 2074–2081, 2002. View at Scopus
  46. G. Zhou, R. Myers, Y. Li et al., “Role of AMP-activated protein kinase in mechanism of metformin action,” Journal of Clinical Investigation, vol. 108, no. 8, pp. 1167–1174, 2001. View at Publisher · View at Google Scholar · View at Scopus
  47. A. J. Mulherin, A. H. Oh, H. Kim, A. Grieco, L. M. Lauffer, and P. L. Brubaker, “Mechanisms underlying metformin-induced secretion of glucagon-like peptide-1 from the intestinal L cell,” Endocrinology, vol. 152, no. 12, pp. 4610–4619, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. K. L. Jones, S. Arslanian, V. A. Peterokova, J.-S. Park, and M. J. Tomlinson, “Effect of metformin in pediatric patients with type 2 diabetes: a randomized controlled trial,” Diabetes Care, vol. 25, no. 1, pp. 89–94, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. J. H. Silverstein and A. L. Rosenbloom, “Treatment of type 2 diabetes mellitus in children and adolescents,” Journal of Pediatric Endocrinology and Metabolism, vol. 13, no. 6, pp. 1403–1409, 2000. View at Scopus
  50. E. A. C. Sellers and H. J. Dean, “Short-term insulin therapy in adolescents with type 2 diabetes mellitus,” Journal of Pediatric Endocrinology and Metabolism, vol. 17, no. 11, pp. 1561–1564, 2004. View at Scopus
  51. M. I. Zuhri-Yafi, P. G. Brosnan, and D. S. Hardin, “Treatment of type 2 diabetes mellitus in children and adolescents,” Journal of Pediatric Endocrinology and Metabolism, vol. 15, no. 1, pp. 541–546, 2002. View at Scopus
  52. R. G. Bretzel, U. Nuber, W. Landgraf, D. R. Owens, C. Bradley, and T. Linn, “Once-daily basal insulin glargine versus thrice-daily prandial insulin lispro in people with type 2 diabetes on oral hypoglycaemic agents (APOLLO): an open randomised controlled trial,” The Lancet, vol. 371, no. 9618, pp. 1073–1084, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. J. A. Cramer, “A systematic review of adherence with medications for diabetes,” Diabetes Care, vol. 27, no. 5, pp. 1218–1224, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. V. S. Raman and R. A. Heptulla, “New potential adjuncts to treatment of children with type 1 diabetes mellitus,” Pediatric Research, vol. 65, no. 4, pp. 370–374, 2009. View at Publisher · View at Google Scholar
  55. M. Gottschalk, T. Danne, A. Vlajnic, and J. F. Cara, “Glimepiride versus metformin as monotherapy in pediatric patients with type 2 diabetes: a randomized, single-blind comparative study,” Diabetes Care, vol. 30, no. 4, pp. 790–794, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. H. E. Lebovitz, J. F. Dole, R. Patwardhan, E. B. Rappaport, and M. I. Freed, “Rosiglitazone monotherapy is effective in patients with type 2 diabetes,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 4, pp. 280–288, 2001. View at Scopus
  57. P. L. Brubaker, “Minireview: update on incretin biology: focus on glucagon-like peptide-1,” Endocrinology, vol. 151, no. 5, pp. 1984–1989, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. D. J. Drucker and M. A. Nauck, “The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes,” The Lancet, vol. 368, no. 9548, pp. 1696–1705, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. J. H. Martin, C. F. Deacon, M. D. Gorrell, and J. B. Prins, “Incretin-based therapies: review of the physiology, pharmacology and emerging clinical experience,” Internal Medicine Journal, vol. 41, no. 4, pp. 299–307, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. G. Rizzo and D. Arduini, “Intrauterine growth restriction: diagnosis and management. A review,” Minerva Ginecologica, vol. 61, no. 5, pp. 411–420, 2009. View at Scopus
  61. A. Peters, “Incretin-based therapies: review of current clinical trial data,” The American Journal of Medicine, vol. 123, no. 3, pp. S28–S37, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. A. D. Kshirsagar, A. S. Aggarwal, U. N. Harle, and A. D. Deshpande, “DPP IV inhibitors: successes, failures and future prospects,” Diabetes and Metabolic Syndrome, vol. 5, no. 2, pp. 105–112, 2011.
  63. L. Sjöström, K. Narbro, C. D. Sjöström, et al., “Effects of bariatric surgery on mortality in Swedish obese subjects,” The New England Journal of Medicine, vol. 357, no. 8, pp. 741–752, 2007.
  64. R. Nandagopal, R. J. Brown, and K. I. Rother, “Resolution of type 2 diabetes following bariatric surgery: implications for adults and adolescents,” Diabetes Technology & Therapeutics, vol. 12, no. 8, pp. 671–677, 2010. View at Scopus
  65. E. Spanakis and C. Gragnoli, “Bariatric surgery, safety and type 2 diabetes,” Obesity Surgery, vol. 19, no. 3, pp. 363–368, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. D. M. Maahs, B. M. Snively, R. A. Bell et al., “Higher prevalence of elevated albumin excretion in youth with type 2 than type 1 diabetes: the SEARCH for diabetes in youth study,” Diabetes Care, vol. 30, no. 10, pp. 2593–2598, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. O. Pinhas-Hamiel and P. Zeitler, “Acute and chronic complications of type 2 diabetes mellitus in children and adolescents,” The Lancet, vol. 369, no. 9575, pp. 1823–1831, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. J. P. H. Shield, L. P. Hunt, J. D. Baum, and C. A. Pennock, “Screening for diabetic microalbuminuria in routine clinical care: which method?” Archives of Disease in Childhood, vol. 72, no. 6, pp. 524–525, 1995. View at Scopus
  69. C. A. Houlihan, C. Tsalamandris, A. Akdeniz, and G. Jerums, “Albumin to creatinine ratio: a screening test with limitations,” The American Journal of Kidney Diseases, vol. 39, no. 6, pp. 1183–1189, 2002. View at Publisher · View at Google Scholar · View at Scopus
  70. R. J. Hogg, S. Furth, K. V. Lemley, et al., “National kidney foundation’s kidney disease outcomes quality initiative clinical practice guidelines for chronic kidney disease in children and adolescents: evaluation, classification, and stratification,” Pediatrics, vol. 111, pp. 1416–1421, 2003.
  71. K. C. Donaghue, F. Chiarelli, D. Trotta, J. Allgrove, and K. Dahl-Jorgensen, “Microvascular and macrovascular complications associated with diabetes in children and adolescents,” Pediatric Diabetes, vol. 10, no. 12, pp. 195–203, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. I. M. Libman and S. A. Arslanian, “Prevention and treatment of type 2 diabetes in youth,” Hormone Research, vol. 67, no. 1, pp. 22–34, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. American Diabetes Association, “Management of dyslipidemia in children and adolescents with diabetes,” Diabetes Care, vol. 26, pp. 2194–2197, 2003.
  74. K. J. Nadeau, G. Klingensmith, and P. Zeitler, “Type 2 diabetes in children is frequently associated with elevated alanine aminotransferase,” Journal of Pediatric Gastroenterology and Nutrition, vol. 41, pp. 94–98, 2005.
  75. B. A. Wicklow, K. D. Wittmeier, A. C. MacIntosh, E. A. Sellers, et al., “Metabolic consequences of hepatic steatosis in overweight and obese adolescents,” Diabetes Care, vol. 35, pp. 905–910, 2012.
  76. A. Kotronen and H. Yki-Järvinen, “Fatty liver: a novel component of the metabolic syndrome,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 1, pp. 27–38, 2008.
  77. A. Alisi, A. E. Feldstein, A. Villani, M. Raponi, and V. Nobili, “Pediatric nonalcoholic fatty liver disease: a multidisciplinary approach,” Nature Reviews Gastroenterology and Hepatology, vol. 13, pp. 152–161, 2012. View at Publisher · View at Google Scholar
  78. R. S. Legro, A. R. Kunselman, W. C. Dodson, and A. Dunaif, “Prevalence and predictors of risk for type 2 diabetes mellitus and impaired glucose tolerance in polycystic ovary syndrome: a prospective, controlled study in 254 affected women,” Journal of Clinical Endocrinology and Metabolism, vol. 84, no. 1, pp. 165–169, 1999. View at Publisher · View at Google Scholar · View at Scopus
  79. B. Rossi, S. Sukalich, J. Droz et al., “Prevalence of metabolic syndrome and related characteristics in obese adolescents with and without polycystic ovary syndrome,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 12, pp. 4780–4786, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. B. C. J. M. Fauser, “Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome,” Fertility and Sterility, vol. 81, no. 1, pp. 19–25, 2004. View at Publisher · View at Google Scholar · View at Scopus
  81. B. C. Fauser, B. C. Tarlatzis, R. W. Rebar et al., “Consensus on women's health aspects of polycystic ovary syndrome (PCOS): the Amsterdam ESHRE/ASRM-Sponsored 3rd PCOS Consensus Workshop Group,” Fertility and Sterility, vol. 97, no. 1, pp. 28.e25–38.e25, 2012.
  82. E. Carmina, S. E. Oberfield, and R. A. Lobo, “The diagnosis of polycystic ovary syndrome in adolescents,” The American Journal of Obstetrics and Gynecology, vol. 203, no. 3, pp. 201.e5–205.e5, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. K. F. Nicandri and K. Hoeger, “Diagnosis and treatment of polycystic ovarian syndrome in adolescents,” Current Opinion in Endocrinology Diabetes and Obesity, vol. 19, pp. 497–504, 2012.
  84. D. A. Ehrmann, “Polycystic ovary syndrome,” The New England Journal of Medicine, vol. 352, no. 12, pp. 1223–1277, 2005. View at Publisher · View at Google Scholar · View at Scopus
  85. B. W. Rackow, “Polycystic ovary syndrome in adolescents,” Current Opinion in Obstetrics and Gynecology, vol. 24, no. 5, pp. 281–287, 2012.
  86. G. Jean-Louis, F. Zizi, L. T. Clark, C. D. Brown, and S. I. McFarlane, “Obstructive sleep apnea and cardiovascular disease: role of the metabolic syndrome and its components,” Journal of Clinical Sleep Medicine, vol. 4, no. 3, pp. 261–272, 2008.
  87. S. Sookoian and C. J. Pirola, “Obstructive sleep apnea is associated with fatty liver and abnormal liver enzymes: a meta-analysis,” Obesity Surgery. In press.
  88. J. Krakoff, R. S. Lindsay, H. C. Looker, R. G. Nelson, R. L. Hanson, and W. C. Knowler, “Incidence of retinopathy and nephropathy in youth-onset compared with adult-onset type 2 diabetes,” Diabetes Care, vol. 26, no. 1, pp. 76–81, 2003. View at Publisher · View at Google Scholar · View at Scopus
  89. M. C. Eppens, M. E. Craig, J. Cusumano et al., “Prevalence of diabetes complications in adolescents with type 2 compared with type 1 diabetes,” Diabetes Care, vol. 29, no. 6, pp. 1300–1306, 2006. View at Publisher · View at Google Scholar · View at Scopus
  90. H. Yokoyama, M. Okudaira, T. Otani et al., “Existence of early-onset NIDDM Japanese demonstrating severe diabetic complications,” Diabetes Care, vol. 20, no. 5, pp. 844–847, 1997. View at Scopus