About this Journal Submit a Manuscript Table of Contents
International Journal of Pediatrics
Volume 2014 (2014), Article ID 309342, 20 pages
http://dx.doi.org/10.1155/2014/309342
Review Article

Clinical Pharmacology of Midazolam in Neonates and Children: Effect of Disease—A Review

Section of Pharmacology, Department of Translational Research and New Technologies in Medicine and Surgery, Medical School, University of Pisa, 56126 Pisa, Italy

Received 9 November 2013; Accepted 26 December 2013; Published 18 February 2014

Academic Editor: Steven M. Donn

Copyright © 2014 Gian Maria Pacifici. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Neonatal Formulary, John Wiley & Sons, West Sussex, UK, 6th edition, 2011.
  2. S. N. De Wildt, G. L. Kearns, S. D. Sie, W. C. J. Hop, and J. N. Van Den Anker, “Pharmacodynamics of intravenous and oral midazolam in preterm infants,” Clinical Drug Investigation, vol. 23, no. 1, pp. 27–38, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. T. E. Young and M. B. Neofax, A Manual of Drugs Used in Neonatal Care, Thomson Reuters, Montvale, NJ, USA, 23rd edition, 2010.
  4. S. J. Mihi and R. A. Harris, “Hypnotic and sedatives,” in Goodman and Gilman's. The Pharmacological Basis of Therapeutics, L. Brunton, B. Chabner, and B. Knollman, Eds., McGraw Hill, New York, NY, USA, 12th edition, 2011.
  5. K. E. Thummel and D. D. Shen, “Isoherranen N. Design and optimization of dosage regimens: pharmacokinetic data,” in Goodman and Gilman's. The Pharmacological Basis of Therapeutics, L. Brunton, B. Chabner, and B. Knollman, Eds., McGraw Hill, New York, NY, USA, 12th edition, 2011.
  6. S. N. De Wildt, G. L. Kearns, W. C. J. Hop, D. J. Murry, S. M. Abdel-Rahman, and J. N. Van Den Anker, “Pharmacokinetics and metabolism of oral midazolam in preterm infants,” British Journal of Clinical Pharmacology, vol. 53, no. 4, pp. 390–392, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Oldenhof, M. De Jong, A. Steenhoek, and R. Janknegt, “Clinical pharmacokinetics of midazolam in intensive care patients, a wide interpatient variability?” Clinical Pharmacology and Therapeutics, vol. 43, no. 3, pp. 263–269, 1988. View at Scopus
  8. G. L. Kearns, S. M. Abdel-Rahman, S. W. Alander, D. L. Blowey, J. S. Leeder, and R. E. Kauffman, “Developmental pharmacology—drug disposition, action, and therapy in infants and children,” The New England Journal of Medicine, vol. 349, no. 12, pp. 1157–1167, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Lacroix, M. Sonnier, A. Moncion, G. Cheron, and T. Cresteil, “Expression of CYP3A in the human liver—evidence that the shift between CYP3A7 and CYP3A4 occurs immediately after birth,” European Journal of Biochemistry, vol. 247, no. 2, pp. 625–634, 1997. View at Scopus
  10. S. N. De Wildt, G. L. Kearns, D. J. Murry, G. Koren, and J. N. Van Den Anker, “Ontogeny of midazolam glucuronidation in preterm infants,” European Journal of Clinical Pharmacology, vol. 66, no. 2, pp. 165–170, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. S. A. Wrighton, W. R. Brian, M.-A. Sari et al., “Studies on the expression and metabolic capabilities of human liver cytochrome P450IIIA5 (HLp3),” Molecular Pharmacology, vol. 38, no. 2, pp. 207–213, 1990. View at Scopus
  12. R. D. Mellon, A. F. Simone, and B. A. Rappaport, “Use of anesthetic agents in neonates and young children,” Anesthesia and Analgesia, vol. 104, no. 3, pp. 509–520, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. V. Jevtovic-Todorovic, R. E. Hartman, Y. Izumi et al., “Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits,” Journal of Neuroscience, vol. 23, no. 3, pp. 876–882, 2003. View at Scopus
  14. C. Young, V. Jevtovic-Todorovic, Y.-Q. Qin et al., “Potential of ketamine and midazolam, individually or in combination, to induce apoptotic neurodegeneration in the infant mouse brain,” British Journal of Pharmacology, vol. 146, no. 2, pp. 189–197, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. E. Ng, A. Taddio, and A. Ohlsson, “Intravenous midazolam infusion for sedation of infants in the neonatal intensive care unit,” Cochrane Database of Systematic Reviews, no. 2, article CD002052, 2000. View at Scopus
  16. E. Jacqz-Aigrain, P. Daoud, P. Burtin, L. Desplanques, and F. Beaufils, “Placebo-controlled trial of midazolam sedation in mechanically ventilated newborn babies,” The Lancet, vol. 344, no. 8923, pp. 646–650, 1994. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Hartwig, B. Roth, and M. Theisohn, “Clinical experience with continuous intravenous sedation using midazolam and fentanyl in the paediatric intensive care unit,” European Journal of Pediatrics, vol. 150, no. 11, pp. 784–788, 1991. View at Scopus
  18. K. J. S. Anand, N. McIntosh, H. Lagercrantz, E. Pelausa, T. E. Young, and R. Vasa, “Analgesia and sedation in preterm neonates who require ventilatory support: results from the NOPAIN trial,” Archives of Pediatrics and Adolescent Medicine, vol. 153, no. 4, pp. 331–338, 1999. View at Scopus
  19. V. Arya and S. Ramji, “Midazolam sedation in mechanically ventilated newborns: a double blind randomized placebo controlled trial,” Indian Pediatrics, vol. 38, no. 9, pp. 967–972, 2001. View at Scopus
  20. L. Lowrie, A. H. Weiss, and C. Lacombe, “The pediatric sedation unit: a mechanism for pediatric sedation,” Pediatrics, vol. 102, no. 3, p. E30, 1998. View at Scopus
  21. E. Ng, A. Taddio, and A. Ohlsson, “Intravenous midazolam infusion for sedation of infants in the neonatal intensive care unit,” Cochrane Database of Systematic Reviews, no. 1, article CD002052, 2003. View at Scopus
  22. J. V. Aranda, W. Carlo, P. Hummel, R. Thomas, V. T. Lehr, and K. J. S. Anand, “Analgesia and sedation during mechanical ventilation in neonates,” Clinical Therapeutics, vol. 27, no. 6, pp. 877–899, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. K.-C. Hu, N.-C. Chiu, C.-S. Ho, S.-T. Lee, and E.-Y. Shen, “Continuous midazolam infusion in the treatment of uncontrollable neonatal seizures,” Acta Paediatrica Taiwanica, vol. 44, no. 5, pp. 279–281, 2003. View at Scopus
  24. J. R. Castro Conde, A. A. Hernández Borges, E. Doménech Martínez, C. González Campo, and R. Perera Soler, “Midazolam in neonatal seizures with no response to phenobarbital,” Neurology, vol. 64, no. 5, pp. 876–879, 2005. View at Scopus
  25. I. Malagon, K. Hogenbirk, J. van Pelt, M. G. Hazekamp, and J. G. Bovill, “Effect of three different anaesthetic agents on the postoperative production of cardiac troponin T in paediatric cardiac surgery,” British Journal of Anaesthesia, vol. 94, no. 6, pp. 805–809, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. S. N. De Wildt, G. L. Kearns, W. C. J. Hop, D. J. Murry, S. M. Abdel-Rahman, and J. N. Van Den Anker, “Pharmacokinetics and metabolism of intravenous midazolam in preterm infants,” Clinical Pharmacology and Therapeutics, vol. 70, no. 6, pp. 525–531, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. N. J. Vet, C. W. M. Verlaat, S. N. De Wildt, D. Tibboel, and M. De Hoog, “Daily interruption of sedation in critically ill children,” Pediatric Critical Care Medicine, vol. 13, no. 1, article 122, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. E. Jacqz-Aigrain, P. Daoud, P. Burtin, S. Maherzi, and F. Beaufils, “Pharmacokinetics of midazolam during continuous infusion in critically ill neonates,” European Journal of Clinical Pharmacology, vol. 42, no. 3, pp. 329–332, 1992. View at Scopus
  29. E. Jacqz-Aigrain, C. Wood, and I. Robieux, “Pharmacokinetics of midazolam in critically ill neonates,” European Journal of Clinical Pharmacology, vol. 39, no. 2, pp. 191–192, 1990. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Mulla, P. McCormack, G. Lawson, R. K. Firmin, and D. R. Upton, “Pharmacokinetics of midazolam in neonates undergoing extracorporeal membrane oxygenation,” Anesthesiology, vol. 99, no. 2, pp. 275–282, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. M. J. Ahsman, M. Hanekamp, E. D. Wildschut, D. Tibboel, and R. A. A. Mathot, “Population pharmacokinetics of midazolam and its metabolites during venoarterial extracorporeal membrane oxygenation in neonates,” Clinical Pharmacokinetics, vol. 49, no. 6, pp. 407–419, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. P. Burtin, E. Jacqz-Aigrain, P. Girard et al., “Population pharmacokinetics of midazolam in neonates,” Clinical Pharmacology and Therapeutics, vol. 56, no. 6, part 1, pp. 615–625, 1994. View at Scopus
  33. T. C. Lee, B. G. Charles, G. J. Harte, P. H. Gray, P. A. Steer, and V. J. Flenady, “Population pharmacokinetic modeling in very premature infants receiving midazolam during mechanical ventilation: midazolam neonatal pharmacokinetics,” Anesthesiology, vol. 90, no. 2, pp. 451–457, 1999. View at Publisher · View at Google Scholar · View at Scopus
  34. S. N. De Wildt, M. De Hoog, A. A. Vinks, E. Van Der Giesen, and J. N. Van Den Anker, “Population pharmacokinetics and metabolism of midazolam in pediatric intensive care patients,” Critical Care Medicine, vol. 31, no. 7, pp. 1952–1958, 2003. View at Scopus
  35. K. Allegaert, J. N. van den Anker, G. Naulaers, and J. de Hoon, “Determinants of drug metabolism in early neonatal life,” Current Clinical Pharmacology, vol. 2, no. 1, pp. 23–29, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. J. A. Ring, H. Ghabrial, M. S. Ching, R. A. Smallwood, and D. J. Morgan, “Fetal hepatic drug elimination,” Pharmacology and Therapeutics, vol. 84, no. 3, pp. 429–445, 1999. View at Publisher · View at Google Scholar · View at Scopus
  37. M. G. Ladona, B. Lindstrom, C. Thyr, P. Dun-Ren, and A. Rane, “Differential foetal development of the O- and N-demethylation of codeine and dextromethorphan in man,” British Journal of Clinical Pharmacology, vol. 32, no. 3, pp. 295–302, 1991. View at Scopus
  38. F. J. Gonzalez, M. Coughtrie, and R. H. Tukey, “Drug Metabolism,” in Goodman and Gilman's. The Pharmacological Basis of Therapeutics, L. Brunton, B. Chabner, and B. Knollman, Eds., McGraw Hill, New York, NY, USA, 12th edition, 2011.
  39. T. C. Lee and B. Charles, “Measurement by HPLC of midazolam and its major metabolite, 1-hydroxymidazolam in plasma of very premature neonates,” Biomedical Chromatography, vol. 10, no. 2, pp. 65–68, 1996.
  40. J. C. Gorski, S. D. Hall, D. R. Jones, M. Van Den Branden, and S. A. Wrighton, “Regioselective biotransformation of midazolam by members of the human cytochrome P450 3A (CYP3A) subfamily,” Biochemical Pharmacology, vol. 47, no. 9, pp. 1643–1653, 1994. View at Publisher · View at Google Scholar · View at Scopus
  41. R. W. Wang, D. J. Newton, N. Y. Liu, M. Shou, T. Rushmore, and A. Y. H. Lu, “Inhibitory anti-CYP3A4 peptide antibody: mapping of inhibitory epitope and specificity toward other CYP3A isoforms,” Drug Metabolism and Disposition, vol. 27, no. 2, pp. 167–172, 1999. View at Scopus
  42. A. Keubler, J. Weiss, W. E. Haefeli, G. Mikus, and J. Burhenne, “Drug interaction of efavirenz and midazolam: efavirenz activates the CYP3A-mediated midazolam 1′-hydroxylation in vitro,” Drug Metab Dispos, vol. 40, no. 6, pp. 1178–1182, 2012.
  43. I. Ince, S. N. de Wildt, M. Y. Peeters et al., “mCritical illness is a major determinant of midazolam clearance in children aged 1 month to 17 years,” Therapeutic Drug Monitoring, vol. 34, no. 4, pp. 381–389, 2012.
  44. P. B. Watkins, “Noninvasive tests of CYP3A enzymes,” Pharmacogenetics, vol. 4, no. 4, pp. 171–184, 1994. View at Scopus
  45. D. S. Streetman, J. F. Bleakley, J. S. Kim et al., “Combined phenotypic assessment of CYP1A2, CYP2C19, CYP2D6, CYP3A, N-acetyltransferase-2, and xanthine oxidase with the &Cooperstown cocktail',” Clinical Pharmacology and Therapeutics, vol. 68, no. 4, pp. 375–383, 2000. View at Publisher · View at Google Scholar · View at Scopus
  46. I. Ince, S. N. de Wildt, C. Wang et al., “A novel maturation function for clearance of the cytochrome P450 3A substrate midazolam from preterm neonates to adults,” Clinical Pharmacokinetics, vol. 52, no. 7, pp. 555–565, 2013.
  47. J. G. Reves, R. J. Fragen, H. R. Vinik, and D. J. Greenblatt, “Midazolam: pharmacology and uses,” Anesthesiology, vol. 62, no. 3, pp. 310–324, 1985. View at Scopus
  48. T. N. Johnson, M. S. Tanner, C. J. Taylor, and G. T. Tucker, “Enterocytic CYP3A4 in a paediatric population: developmental changes and the effect of coeliac disease and cystic fibrosis,” British Journal of Clinical Pharmacology, vol. 51, no. 5, pp. 451–460, 2001. View at Publisher · View at Google Scholar · View at Scopus
  49. S. N. De Wildt, G. L. Kearns, J. S. Leeder, and J. N. Van Den Anker, “Cytochrome P450 3A. Ontogeny and drug disposition,” Clinical Pharmacokinetics, vol. 37, no. 6, pp. 485–505, 1999. View at Scopus
  50. B. J. Anderson and P. Larsson, “A maturation model for midazolam clearance,” Paediatric Anaesthesia, vol. 21, no. 3, pp. 302–308, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. K. S. Pang and M. Rowland, “Hepatic clearance of drugs. I. Theoretical considerations of a “well-stirred” model and a “parallel tube” model. Influence of hepatic blood flow, plasma and blood cell binding, and the hepatocellular enzymatic activity on hepatic drug clearance,” Journal of Pharmacokinetics and Biopharmaceutics, vol. 5, no. 6, pp. 625–653, 1977. View at Scopus
  52. R. B. Labroo, M. F. Paine, K. E. Thummel, and E. D. Kharasch, “Fentanyl metabolism by human hepatic and intestinal cytochrome P450 3A4: implications for interindividual variability in disposition, efficacy, and drug interactions,” Drug Metabolism and Disposition, vol. 25, no. 9, pp. 1072–1080, 1997. View at Scopus
  53. M. Y. M. Peeters, S. A. Prins, C. A. J. Knibbe et al., “Pharmacokinetics and pharmacodynamics of midazolam and metabolites in nonventilated infants after craniofacial surgery,” Anesthesiology, vol. 105, no. 6, pp. 1135–1146, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. S. N. De Wildt, M. De Hoog, A. A. Vinks, K. F. M. Joosten, M. Van Dijk, and J. N. Van Den Anker, “Pharmacodynamics of midazolam in pediatric intensive care patients,” Therapeutic Drug Monitoring, vol. 27, no. 1, pp. 98–102, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. M. L. Buck, “Pharmacokinetic changes during extracorporeal membrane oxygenation: implications for drug therapy of neonates,” Clinical Pharmacokinetics, vol. 42, no. 5, pp. 403–417, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. K. Shekar, J. F. Fraser, M. T. Smith, and J. A. Roberts, “Pharmacokinetic changes in patients receiving extracorporeal membrane oxygenation,” Journal of Critical Care, vol. 27, no. 6, pp. 741.e9–741.e18, 2012. View at Publisher · View at Google Scholar · View at Scopus
  57. J. W. Mandema, B. Tuk, A. L. Van Steveninck, D. D. Breimer, A. F. Cohen, and M. Danhof, “Pharmcokinetic-pharmacodynamic modeling of the central nervous system effects of midazolam and its main metabolite α-hydroxymidazolam in healthy volunteers,” Clinical Pharmacology and Therapeutics, vol. 51, no. 6, pp. 715–728, 1992. View at Scopus
  58. A. R. Lloyd-Thomas and P. D. Booker, “Infusion of midazolam in paediatric patients after cardiac surgery,” British Journal of Anaesthesia, vol. 58, no. 10, pp. 1109–1115, 1986. View at Scopus
  59. B. B. DeBerry, J. E. Lynch, J. M. Chernin, J. B. Zwischenberger, and D. H. Chung, “A survey for pain and sedation medications in pediatric patients during extracorporeal membrane oxygenation,” Perfusion, vol. 20, no. 3, pp. 139–143, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. A. M. Harrison, S. Davis, S. Eggleston, R. Cunningham, R. B. B. Mee, and P. M. Bokesch, “Serum creatinine and estimated creatinine clearance do not predict perioperatively measured creatinine clearance in neonates undergoing congenital heart surgery,” Pediatric Critical Care Medicine, vol. 4, no. 1, pp. 55–59, 2003. View at Scopus
  61. J. Hughes, A. M. Gill, H. Mulhearn, E. Powell, and I. Choonara, “Steady-state plasma concentrations of midazolam in critically ill infants and children,” Annals of Pharmacotherapy, vol. 30, no. 1, pp. 27–30, 1996. View at Scopus
  62. H. M. L. Mathews, I. W. Carson, S. M. Lyons et al., “A pharmacokinetic study of midazolam in paediatric patients undergoing cardiac surgery,” British Journal of Anaesthesia, vol. 61, no. 3, pp. 302–307, 1988. View at Scopus
  63. E. L. Swart, P. R. Slort, and F. B. Plötz, “Growing up with midazolam in the neonatal and pediatric intensive care,” Current Drug Metabolism, vol. 13, no. 6, pp. 760–766, 2012.
  64. P. Trouiller, P. Fangio, C. Paugam-Burtz et al., “Frequency and clinical impact of preserved bispectral index activity during deep sedation in mechanically ventilated ICU patients,” Intensive Care Medicine, vol. 35, no. 12, pp. 2096–2104, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. R. Arbour, J. Waterhouse, M. A. Seckel, and L. Bucher, “Correlation between the Sedation-Agitation Scale and the Bispectral Index in ventilated patients in the intensive care unit,” Heart and Lung, vol. 38, no. 4, pp. 336–345, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. S. Björkman, “Prediction of drug disposition in infants and children by means of physiologically based pharmacokinetic (PBPK) modelling: theophylline and midazolam as model drugs,” British Journal of Clinical Pharmacology, vol. 59, no. 6, pp. 691–704, 2005. View at Publisher · View at Google Scholar · View at Scopus
  67. S. Björkman, “Prediction of cytochrome P450-mediated hepatic drug clearance in neonates, infants and children: how accurate are available scaling methods?” Clinical Pharmacokinetics, vol. 45, no. 1, pp. 1–11, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. T. N. Johnson, A. Rostami-Hodjegan, and G. T. Tucker, “Prediction of the clearance of eleven drugs and associated variability in neonates, infants and children,” Clinical Pharmacokinetics, vol. 45, no. 9, pp. 931–956, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. C. M. Marx, P. G. Smith, L. H. Lowrie et al., “Optimal sedation of mechanically ventilated pediatric critical care patients,” Critical Care Medicine, vol. 22, no. 1, pp. 163–170, 1994. View at Scopus
  70. D. L. Silvasi, D. A. Rosen, and K. R. Rosen, “Continuous intravenous midazolam infusion for sedation in the Pediatric Intensive Care Unit,” Anesthesia and Analgesia, vol. 67, no. 3, pp. 286–288, 1988. View at Scopus
  71. D. A. Rosen and K. R. Rosen, “Midazolam for sedation in the paediatric intensive care unit,” Intensive Care Medicine, vol. 17, supplement 1, pp. S15–S19, 1991. View at Scopus
  72. G. Ancora, E. Garetti, A. Pirelli et al., “Analgesic and sedative drugs in newborns requiring respiratory support,” Journal of Maternal-Fetal and Neonatal Medicine, vol. 25, supplement 4, pp. 88–90, 2012.
  73. D. A. Rosen and K. R. Rosen, “Intravenous conscious sedation with midazolam in paediatric patients,” International Journal of Clinical Practice, vol. 52, no. 1, pp. 46–50, 1998. View at Scopus
  74. American Academy of Pediatrics, Committee on Drugs, “Guidelines for monitoring and management of pediatric patients during and after sedation for diagnostic and therapeutic procedures,” Pediatrics, vol. 89, pp. 1110–1115, 1992.
  75. D. A. Notterman, “Sedation with intravenous midazolam in the pediatric intensive care unit,” Clinical Pediatrics, vol. 36, no. 8, pp. 449–454, 1997. View at Scopus
  76. J. Hughes, A. Gill, H. J. Leach et al., “A prospective study of the adverse effects of midazolam on withdrawal in critically ill children,” Acta Paediatrica, International Journal of Paediatrics, vol. 83, no. 11, pp. 1194–1199, 1994. View at Scopus
  77. J.-M. Treluyer, S. Zohar, E. Rey et al., “Minimum effective dose of midazolam for sedation of mechanically ventilated neonates,” Journal of Clinical Pharmacy and Therapeutics, vol. 30, no. 5, pp. 479–485, 2005. View at Publisher · View at Google Scholar · View at Scopus
  78. P. Burtin, P. Daoud, E. Jacqz-Aigrain, P. Mussat, and G. Moriette, “Hypotension with midazolam and fentanyl in the newborn,” The Lancet, vol. 337, no. 8756, pp. 1545–1546, 1991. View at Scopus
  79. J. P. Lazol and C. G. DeGroff, “Minimal sedation second dose strategy with intranasal midazolam in an outpatient pediatric echocardiographic setting,” Journal of the American Society of Echocardiography, vol. 22, no. 4, pp. 383–387, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. N. C. T. Wilton, J. Leight, D. R. Rosen, and U. A. Pandit, “Preanesthetic sedation of preschool children using intranasal midazolam,” Anesthesiology, vol. 69, no. 6, pp. 972–975, 1988. View at Scopus
  81. P. Löwhagen, B. B. Johansson, and C. Nordborg, “The nasal route of cerebrospinal fluid drainage in man: a light-microscope study,” Neuropathology and Applied Neurobiology, vol. 20, no. 6, pp. 543–550, 1994. View at Scopus
  82. J. Berlin C.M., D. G. May-McCarver, D. A. Notterman et al., “Alternative routes of drug administration—advantages and disadvantages,” Pediatrics, vol. 100, no. 1, pp. 143–152, 1997. View at Publisher · View at Google Scholar · View at Scopus
  83. P. D. Knoester, D. M. Jonker, R. T. M. Van Der Hoeven et al., “Pharmacokinetics and pharmacodynamics of midazolam administered as a concentrated intranasal spray. A study in healthy volunteers,” British Journal of Clinical Pharmacology, vol. 53, no. 5, pp. 501–507, 2002. View at Publisher · View at Google Scholar · View at Scopus
  84. A. H. Burstein, R. Modica, M. Hatton, A. Forrest, and F. M. Gengo, “Pharmacokinetics and pharmacodynamics of midazolam after intranasal administration,” Journal of Clinical Pharmacology, vol. 37, no. 8, pp. 711–718, 1997. View at Scopus
  85. E. Rey, L. Delaunay, G. Pons et al., “Pharmacokinetics of midazolam in children: comparative study of intranasal and intravenous administration,” European Journal of Clinical Pharmacology, vol. 41, no. 4, pp. 355–357, 1991. View at Scopus
  86. G. Ljungman, A. Kreuger, S. Andréasson, T. Gordh, and S. Sörensen, “Midazolam nasal spray reduces procedural anxiety in children,” Pediatrics, vol. 105, no. 1, part 1, pp. 73–78, 2000. View at Scopus
  87. N. Griffith, S. Howell, and D. G. Mason, “Intranasal midazolam for premedication of children undergoing day-case anaesthesia: comparison of two delivery systems with assessment of intra-observer variability,” British Journal of Anaesthesia, vol. 81, no. 6, pp. 865–869, 1998. View at Scopus
  88. A. Kogan, J. Katz, R. Efrat, and L. A. Eidelman, “Premedication with midazolam in young children: a comparison of four routes of administration,” Paediatric Anaesthesia, vol. 12, no. 8, pp. 685–689, 2002. View at Publisher · View at Google Scholar · View at Scopus
  89. R. D. Lane and J. E. Schunk, “Atomized intranasal midazolam use for minor procedures in the pediatric emergency department,” Pediatric Emergency Care, vol. 24, no. 5, pp. 300–303, 2008. View at Publisher · View at Google Scholar · View at Scopus
  90. H. T. Harcke, L. E. Grissom, and M. A. Meister, “Sedation in pediatric imaging using intranasal midazolam,” Pediatric Radiology, vol. 25, no. 5, pp. 341–343, 1995. View at Publisher · View at Google Scholar · View at Scopus
  91. L. A. Slaughter, A. D. Patel, and J. L. Slaughter, “Pharmacological treatment of neonatal seizures: a systematic review,” Journal of Child Neurology, vol. 28, no. 3, pp. 351–364, 2013.
  92. D. Sirsi, S. Nangia, J. LaMothe, B. E. Kosofsky, and G. E. Solomon, “Successful management of refractory neonatal seizures with midazolam,” Journal of Child Neurology, vol. 23, no. 6, pp. 706–709, 2008. View at Publisher · View at Google Scholar · View at Scopus
  93. M. Eriksson and R. Zetterstrom, “Neonatal convulsions. Incidence and causes in the Stockholm area,” Acta Paediatrica Scandinavica, vol. 68, no. 6, pp. 807–811, 1979. View at Scopus
  94. M. J. Painter, M. S. Scher, A. D. Stein et al., “Phenobarbital compared with phenytoin for the treatment of neonatal seizures,” The New England Journal of Medicine, vol. 341, no. 7, pp. 485–489, 1999. View at Publisher · View at Google Scholar · View at Scopus
  95. G. B. Boylan, J. M. Rennie, R. M. Pressler, G. Wilson, M. Morton, and C. D. Binnie, “Phenobarbitone, neonatal seizures, and video-EEG,” Archives of Disease in Childhood, vol. 86, no. 3, pp. F165–F170, 2002. View at Scopus
  96. R. D. Sheth, D. J. Buckley, A. R. Gutierrez, M. Gingold, J. B. Bodensteiner, and S. Penney, “Midazolam in the treatment of refractory neonatal seizures,” Clinical Neuropharmacology, vol. 19, no. 2, pp. 165–170, 1996. View at Scopus
  97. L. G. van Rooij, L. Hellström-Westas, and L. S. de Vries, “Treatment of neonatal seizures,” Seminars in Fetal & Neonatal Medicine, vol. 18, no. 4, pp. 209–215, 2013.
  98. E. Shany, O. Benzaqen, and N. Watemberg, “Comparison of continuous drip of midazolam or lidocaine in the treatment of intractable neonatal seizures,” Journal of Child Neurology, vol. 22, no. 3, pp. 255–259, 2007. View at Publisher · View at Google Scholar · View at Scopus
  99. H. Yamamoto, M. Aihara, S. Niijima, and H. Yamanouchi, “Treatments with midazolam and lidocaine for status epilepticus in neonates,” Brain and Development, vol. 29, no. 9, pp. 559–564, 2007. View at Publisher · View at Google Scholar · View at Scopus
  100. G. L. Holmes and J. J. Riviello Jr., “Midazolam and pentobarbital for refractory status epilepticus,” Pediatric Neurology, vol. 20, no. 4, pp. 259–264, 1999. View at Publisher · View at Google Scholar · View at Scopus
  101. J. C. D. Brevoord, K. F. M. Joosten, W. F. M. Arts, R. W. van Rooij, and M. de Hoog, “Status epilepticus: clinical analysis of a treatment protocol based on midazolam and phenytoin,” Journal of Child Neurology, vol. 20, no. 6, pp. 476–481, 2005. View at Scopus
  102. A. Kumar and T. P. Bleck, “Intravenous midazolam for the treatment of refractory status epilepticus,” Critical Care Medicine, vol. 20, no. 4, pp. 483–488, 1992. View at Scopus
  103. E. Lahat, M. Goldman, J. Barr, T. Bistritzer, and M. Berkovitch, “Comparison of intranasal midazolam with intravenous diazepam for treating febrile seizures in children: prospective randomised study,” British Medical Journal, vol. 321, no. 7253, pp. 83–86, 2000. View at Scopus
  104. G. Geldner, M. Hubmann, R. Knoll, and K. Jacobi, “Comparison between three transmucosal routes of administration of midazolam in children,” Paediatric Anaesthesia, vol. 7, no. 2, pp. 103–109, 1997. View at Scopus
  105. J. McIntyre, S. Robertson, E. Norris et al., “Safety and efficacy of buccal midazolam versus rectal diazepam for emergency treatment of seizures in children: a randomised controlled trial,” The Lancet, vol. 366, no. 9481, pp. 205–210, 2005. View at Publisher · View at Google Scholar · View at Scopus
  106. T. Mahmoudian and M. M. Zadeh, “Comparison of intranasal midazolam with intravenous diazepam for treating acute seizures in children,” Epilepsy and Behavior, vol. 5, no. 2, pp. 253–255, 2004. View at Publisher · View at Google Scholar · View at Scopus
  107. R. Carbajal, B. Eble, and K. J. S. Anand, “Premedication for tracheal intubation in neonates: confusion or controversy?” Seminars in Perinatology, vol. 31, no. 5, pp. 309–317, 2007. View at Publisher · View at Google Scholar · View at Scopus
  108. M. G. Penido, D. F. De Oliveira Silva, E. C. Tavares, and Y. P. E Silva, “Propofol versus midazolam for intubating preterm neonates: a randomized controlled trial,” Journal of Perinatology, vol. 31, no. 5, pp. 356–360, 2011. View at Publisher · View at Google Scholar · View at Scopus
  109. K. Allegaert, M. Y. Peeters, R. Verbesselt et al., “Inter-individual variability in propofol pharmacokinetics in preterm and term neonates,” British Journal of Anaesthesia, vol. 99, no. 6, pp. 864–870, 2007. View at Publisher · View at Google Scholar · View at Scopus
  110. A. Jobeir, M. O. Galal, Z. R. Bulbul, L. Solymar, A. Darwish, and A. A. Schmaltz, “Use of low-dose ketamine and/or midazolam for pediatric cardiac catheterization: is an anesthesiologist needed?” Pediatric Cardiology, vol. 24, no. 3, pp. 236–243, 2003. View at Publisher · View at Google Scholar · View at Scopus
  111. S. Sweetman, Ed., Martindale: The Complete Drug Reference, Pharmaceutical Press, London, UK, 34th edition, 2005.
  112. J. N. Van den Anker and P. J. J. Sauer, “The use of midazolam in the preterm neonate,” European Journal of Pediatrics, vol. 151, no. 2, p. 152, 1992. View at Scopus
  113. R. L. Sheridan, M. McEttrick, G. Bacha, F. Stoddard, and R. G. Tompkins, “Midazolam infusion in pediatric patients with burns who are undergoing mechanical ventilation,” Journal of Burn Care and Rehabilitation, vol. 15, no. 6, pp. 515–518, 1994. View at Publisher · View at Google Scholar · View at Scopus
  114. I. Bergman, M. Steeves, G. Burckart, and A. Thompson, “Reversible neurologic abnormalities associated with prolonged intravenous midazolam and fentanyl administration,” Journal of Pediatrics, vol. 119, no. 4, pp. 644–649, 1991. View at Publisher · View at Google Scholar · View at Scopus
  115. T. B. Vree, M. Shimoda, J. J. Driessen et al., “Decreased plasma albumin concentration results in increased volume of distribution and decreased elimination of midazolam in intensive care patients,” Clinical Pharmacology and Therapeutics, vol. 46, no. 5, pp. 537–544, 1989. View at Scopus
  116. G. J. Harte, P. H. Gray, T. C. Lee, P. A. Steer, and B. G. Charles, “Haemodynamic responses and population pharmacokinetics of midazolam following administration to ventilated, preterm neonates,” Journal of Paediatrics and Child Health, vol. 33, no. 4, pp. 335–338, 1997. View at Scopus
  117. A. A. E. M. Van Alfen-Van Der Velden, J. C. W. Hopman, J. H. G. M. Klaessens, T. Feuth, R. C. A. Sengers, and K. D. Liem, “Effects of midazolam and morphine on cerebral oxygenation and hemodynamics in ventilated premature infants,” Biology of the Neonate, vol. 90, no. 3, pp. 197–202, 2006. View at Publisher · View at Google Scholar · View at Scopus
  118. K. Van Leuven, F. Groenendaal, M. C. Toet et al., “Midazolam and amplitude-integrated EEG in asphyxiated full-term neonates,” Acta Paediatrica, International Journal of Paediatrics, vol. 93, no. 9, pp. 1221–1227, 2004. View at Publisher · View at Google Scholar · View at Scopus
  119. H. Mulla, G. Lawson, G. J. Peek, R. K. Firmin, and D. R. Upton, “Plasma concentrations of midazolam in neonates receiving extracorporeal membrane oxygenation,” ASAIO Journal, vol. 49, no. 1, pp. 41–47, 2003. View at Publisher · View at Google Scholar · View at Scopus