About this Journal Submit a Manuscript Table of Contents
International Journal of Pediatrics
Volume 2014 (2014), Article ID 328076, 9 pages
http://dx.doi.org/10.1155/2014/328076
Research Article

Innovation through Wearable Sensors to Collect Real-Life Data among Pediatric Patients with Cardiometabolic Risk Factors

1Université de Montréal Hospital Research Center, Centre de Recherche du CHUM (CRCHUM), Tour St-Antoine S02-340, 850 St-Denis, Montreal, QC, Canada H2X 0A9
2Social and Preventive Medicine Department, Université de Montréal, Montreal, QC, Canada H3N 1X7
3CHU Sainte-Justine Research Center, Montreal, QC, Canada H3T 1C5
4Department of Exercise Science, Concordia University, Montreal, QC, Canada H4B 1R6
5Department of Kinesiology, University of Montreal, Montreal, QC, Canada H3T 1J4
6Division of Endocrinology, Department of Pediatrics, CHU Sainte-Justine and Université de Montréal, Montreal, QC, Canada H3T 1C5
7Division of Cardiology, Department of Pediatrics, CHU Sainte-Justine and Université de Montréal, Montreal, QC, Canada H3T 1C5
8Synemorphose Inc., Montreal, QC, Canada H4C 3H2
9Division of Genetics, Department of Pediatrics, CHU Sainte-Justine and Université de Montréal, Montreal, QC, Canada H3T 1C5

Received 5 August 2013; Revised 16 October 2013; Accepted 16 October 2013; Published 6 January 2014

Academic Editor: M. Genel

Copyright © 2014 Kestens Yan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. J. Olshansky, D. J. Passaro, R. C. Hershow et al., “A potential decline in life expectancy in the United States in the 21st century,” The New England Journal of Medicine, vol. 352, no. 11, pp. 1138–1145, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. R. H. Eckel, R. Kahn, R. M. Robertson, and R. A. Rizza, “Preventing cardiovascular disease and diabetes: a call to action from the American diabetes association and the American heart association,” Circulation, vol. 113, no. 25, pp. 2943–2946, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. M. A. Pereira, T. E. Kottke, C. Jordan, P. J. O'Connor, N. P. Pronk, and R. Carreón, “Preventing and managing cardiometabolic risk: the logic for intervention,” International Journal of Environmental Research and Public Health, vol. 6, no. 10, pp. 2568–2584, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. R. R. Wing, R. F. Hamman, G. A. Bray et al., “Achieving weight and activity goals among diabetes prevention program lifestyle participants,” Obesity Research, vol. 12, no. 9, pp. 1426–1434, 2004. View at Scopus
  5. C. Roumen, E. E. Blaak, and E. Corpeleijn, “Lifestyle intervention for prevention of diabetes: determinants of success for future implementation,” Nutrition Reviews, vol. 67, no. 3, pp. 132–146, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. M. E. Nelson, W. J. Rejeski, S. N. Blair et al., “Physical activity and public health in older adults: recommendation from the American college of sports medicine and the American heart association,” Medicine and Science in Sports and Exercise, vol. 39, no. 8, pp. 1435–1445, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Worringham, A. Rojek, and I. Stewart, “Development and feasibility of a smartphone, ECG and GPS based system for remotely monitoring exercise in cardiac rehabilitation,” PLoS ONE, vol. 6, no. 2, Article ID e14669, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Thierry, B. Chaix, and Y. Kestens, “Detecting activity locations from raw GPS data: a novel kernel-based algorithm,” International Journal of Health Geographics, vol. 12, no. 1, article 14, 2013. View at Publisher · View at Google Scholar
  9. M. Buchheit, C. Platat, M. Oujaa, and C. Simon, “Habitual physical activity, physical fitness and heart rate variability in preadolescents,” International Journal of Sports Medicine, vol. 28, no. 3, pp. 204–210, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. B. M. Lynch, D. W. Dunstan, G. N. Healy, E. Winkler, E. Eakin, and N. Owen, “Objectively measured physical activity and sedentary time of breast cancer survivors, and associations with adiposity: findings from NHANES (2003–2006),” Cancer Causes and Control, vol. 21, no. 2, pp. 283–288, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. R. J. Gretebeck and H. J. Montoye, “Variability of some objective measures of physical activity,” Medicine and Science in Sports and Exercise, vol. 24, no. 10, pp. 1167–1172, 1992. View at Scopus
  12. T. Lillesand, R. W. Kiefer, and J. Chipman, Remote Sensing and Image Interpretation, John Wiley & Sons, New York, NY, USA, 6th edition, 2007.
  13. T. A. Randall and B. W. Baetz, “Evaluating pedestrian connectivity for suburban sustainability,” Journal of Urban Planning and Development, vol. 127, no. 1, pp. 1–15, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. B. E. Saelens, J. F. Sallis, J. B. Black, and D. Chen, “Neighborhood-based differences in physical activity: an environment scale evaluation,” The American Journal of Public Health, vol. 93, no. 9, pp. 1552–1558, 2003. View at Scopus
  15. B. E. Saelens and S. L. Handy, “Built environment correlates of walking: a review,” Medicine and Science in Sports and Exercise, vol. 40, no. 7, supplement, pp. S550–S566, 2008. View at Scopus
  16. K. K. Davison and C. T. Lawson, “Do attributes in the physical environment influence children's physical activity? A review of the literature,” International Journal of Behavioral Nutrition and Physical Activity, vol. 3, article 19, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. Inc. A., Actilife 4—User's Manual, 2009.
  18. L. Choi, Z. Liu, C. E. Matthews, and M. S. Buchowski, “Validation of accelerometer wear and nonwear time classification algorithm,” Medicine and Science in Sports and Exercise, vol. 43, no. 2, pp. 357–364, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. S. G. Trost, P. D. Loprinzi, R. Moore, and K. A. Pfeiffer, “Comparison of accelerometer cut points for predicting activity intensity in youth,” Medicine and Science in Sports and Exercise, vol. 43, no. 7, pp. 1360–1368, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. K. B. Adamo, S. A. Prince, A. C. Tricco, S. Connor-Gorber, and M. Tremblay, “A comparison of indirect versus direct measures for assessing physical activity in the pediatric population: a systematic review,” International Journal of Pediatric Obesity, vol. 4, no. 1, pp. 2–27, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. K. J. Coleman, B. E. Saelens, M. D. Wiedrich-Smith, J. D. Finn, and L. H. Epstein, “Relationships between TriTrac-R3D vectors, heart rate, and self-report in obese children,” Medicine and Science in Sports and Exercise, vol. 29, no. 11, pp. 1535–1542, 1997. View at Publisher · View at Google Scholar · View at Scopus
  22. E. Stice, K. Presnell, H. Shaw, and P. Rhode, “Psychological and behavioral risk factors for obesity onset in adolescent girls: a prospective study,” Journal of Consulting and Clinical Psychology, vol. 73, no. 2, pp. 195–202, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Maddison and C. Ni Mhurchu, “Global positioning system: a new opportunity in physical activity measurement,” International Journal of Behavioral Nutrition and Physical Activity, vol. 6, article 73, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. B. Noury-Desvaux, P. Abraham, G. Mahé, T. Sauvaget, G. Leftheriotis, and A. Le Faucheur, “The accuracy of a simple, low-cost GPS data logger/receiver to study outdoor human walking in view of health and clinical studies,” PLoS ONE, vol. 6, no. 9, Article ID e23027, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Kerr, S. Duncan, and J. Schipperjin, “Using global positioning systems in health research: a practical approach to data collection and processing,” The American Journal of Preventive Medicine, vol. 41, no. 5, pp. 532–540, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. B. Chaix, J. Meline, S. Duncan et al., “GPS tracking in neighborhood and health studies: a step forward for environmental exposure assessment, a step backward for causal inference?” Health and Place, vol. 21, pp. 46–51, 2013. View at Publisher · View at Google Scholar
  27. D. A. Rodriguez, G. Cho, J. P. Elder et al., “Identifying walking trips from GPS and accelerometer data in adolescent females,” Journal of Physical Activity and Health, vol. 9, no. 3, pp. 421–431, 2012. View at Scopus
  28. S. E. Wiehe, S. C. Hoch, G. C. Liu, A. E. Carroll, J. S. Wilson, and J. D. Fortenberry, “Adolescent travel patterns: pilot data indicating distance from home varies by time of day and day of week,” Journal of Adolescent Health, vol. 42, no. 4, pp. 418–420, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Le Faucheur, P. Abraham, V. Jaquinandi, P. Bouyé, J. L. Saumet, and B. Noury-Desvaux, “Study of human outdoor walking with a low-cost GPS and simple spreadsheet analysis,” Medicine and Science in Sports and Exercise, vol. 39, no. 9, pp. 1570–1578, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Dill, “Bicycling for transportation and health: the role of infrastructure,” Journal of Public Health Policy, vol. 30, supplement 1, pp. S95–S110, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. N. Shoval, G. Auslander, K. Cohen-Shalom, M. Isaacson, R. Landau, and J. Heinik, “What can we learn about the mobility of the elderly in the GPS era?” Journal of Transport Geography, vol. 18, no. 5, pp. 603–612, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. S. C. Webber and M. M. Porter, “Monitoring mobility in older adults using global positioning system (GPS) watches and accelerometers: a feasibility study,” Journal of Aging and Physical Activity, vol. 17, no. 4, pp. 455–467, 2009. View at Scopus
  33. N. Shoval, G. K. Auslander, T. Freytag et al., “The use of advanced tracking technologies for the analysis of mobility in Alzheimer's disease and related cognitive diseases,” BMC Geriatrics, vol. 8, article 7, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. G. Townley, B. Kloos, and P. A. Wright, “Understanding the experience of place: expanding methods to conceptualize and measure community integration of persons with serious mental illness,” Health and Place, vol. 15, no. 2, pp. 520–531, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. A. R. Cooper, A. S. Page, B. W. Wheeler et al., “Mapping the walk to school using accelerometry combined with a global positioning system,” The American Journal of Preventive Medicine, vol. 38, no. 2, pp. 178–183, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. M. J. Duncan, H. M. Badland, and W. K. Mummery, “Applying GPS to enhance understanding of transport-related physical activity,” Journal of Science and Medicine in Sport, vol. 12, no. 5, pp. 549–556, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. M. J. Duncan, W. K. Mummery, and B. J. Dascombe, “Utility of global positioning system to measure active transport in urban areas,” Medicine and Science in Sports and Exercise, vol. 39, no. 10, pp. 1851–1857, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. R. Quigg, A. Gray, A. I. Reeder, A. Holt, and D. L. Waters, “Using accelerometers and GPS units to identify the proportion of daily physical activity located in parks with playgrounds in New Zealand children,” Preventive Medicine, vol. 50, no. 5-6, pp. 235–240, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. P. J. Troped, J. S. Wilson, C. E. Matthews, E. K. Cromley, and S. J. Melly, “The built environment and location-based physical activity,” The American Journal of Preventive Medicine, vol. 38, no. 4, pp. 429–438, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. K. Elgethun, M. G. Yost, C. T. E. Fitzpatrick, T. L. Nyerges, and R. A. Fenske, “Comparison of global positioning system (GPS) tracking and parent-report diaries to characterize children's time-location patterns,” Journal of Exposure Science and Environmental Epidemiology, vol. 17, no. 2, pp. 196–206, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. B. Chaix, Y. Kestens, C. Perchoux, N. Karusisi, J. Merlo, and K. Labadi, “An interactive mapping tool to assess individual mobility patterns in neighborhood studies,” The American Journal of Preventive Medicine, vol. 43, no. 4, pp. 440–450, 2012. View at Publisher · View at Google Scholar
  42. Y. Kestens, A. Lebel, M. Daniel, M. Thériault, and R. Pampalon, “Using experienced activity spaces to measure foodscape exposure,” Health and Place, vol. 16, no. 6, pp. 1094–1103, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. G. Miller, “The smartphone psychology manifesto,” Perspectives in Psycholigical Science, vol. 7, no. 3, pp. 221–237, 2012. View at Publisher · View at Google Scholar
  44. N. Wan and G. Lin, “Life-space characterization from cellular telephone collected GPS data,” Computers, Environment and Urban Systems, vol. 39, pp. 63–70, 2013. View at Publisher · View at Google Scholar
  45. J. Auld, M. Z. Frignani, C. Williams, and A. K. Mohammadian, “Results of the utracs internet-based prompted recall gps activity-travel survey for the Chicago region,” in Proceedings of the 12th WTCR, Lisbon, Portugal, July 2010.
  46. J. Auld, C. Williams, A. Mohammadian, and P. Nelson, “An automated GPS-based prompted recall survey with learning algorithms,” Transportation Letters, vol. 1, no. 1, pp. 59–79, 2009. View at Publisher · View at Google Scholar
  47. M. Flamm, C. Jemelin, and V. Kaufmann, “Combining person based GPS tracking and prompted recall interviews for a comprehensive investigation of travel behaviour adaptation processes during life course transitions,” in Proceedings of the 11th World Conference on Transport Research, Berkeley, Calif, USA, June 2007.