About this Journal Submit a Manuscript Table of Contents
International Journal of Peptides
Volume 2010 (2010), Article ID 537639, 10 pages
http://dx.doi.org/10.1155/2010/537639
Research Article

Brain Activation by Peptide Pro-Leu-Gly- N H 𝟐 (MIF-1)

1Blood-Brain Barrier Group, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
2The Ochsner Clinic Foundation, New Orleans, LA 70121, USA

Received 26 October 2009; Revised 12 January 2010; Accepted 13 January 2010

Academic Editor: Yvette Taché

Copyright © 2010 Reas S. Khan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Pan and A. J. Kastin, “From MIF-1 to endomorphin: the Tyr-MIF-1 family of peptides,” Peptides, vol. 28, no. 12, pp. 2411–2434, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. D. Xu, “Preliminary report on the effect of PLG (MIF-1) in the treatment of Parkinson's disease,” Acta Universitatis Medicinalis Secondae Shanghai, vol. 6, pp. 328–329, 1986.
  3. W. Pan and A. J. Kastin, “Evolution of neuropeptide concepts illustrated by MIF-1 and MSH,” in Transmitters and Modulators in Health and Disease, S. Shioda, I. Homma, and N. Kato, Eds., New Frontiers in Neuroscience, pp. 3–17, Springer, New York, NY, USA, 2009.
  4. A. J. Kastin, K. Hahn, J. Erchegyi, et al., “Differential metabolism of Tyr-MIF-1 and MIF-1 in rat and human plasma,” Biochemical Pharmacology, vol. 47, no. 4, pp. 699–709, 1994. View at Publisher · View at Google Scholar · View at Scopus
  5. A. J. Kastin, R. D. Olson, R. H. Ehrensing, M. C. Berzas, A. V. Schally, and D. H. Coy, “MIF-I's differential actions as an opiate antagonist,” Pharmacology Biochemistry & Behavior, vol. 11, no. 6, pp. 721–723, 1979. View at Scopus
  6. R. H. Ehrensing, A. J. Kastin, and G. F. Michell, “Antagonism of morphine analgesia by prolyl-leucyl-glycinamide (MIF-1) in humans,” Pharmacology Biochemistry & Behavior, vol. 21, no. 6, pp. 975–978, 1984. View at Scopus
  7. N. P. Plotnikoff and A. J. Kastin, “Pharmacological studies with a tripeptide, prolyl leucyl glycine amide,” Archives Internationales de Pharmacodynamie et de Thérapie, vol. 211, no. 2, pp. 211–224, 1974. View at Scopus
  8. A. Barbeau, “Potentiation of levodopa effect by intravenous L prolyl L leucyl glycine amide in man,” Lancet, vol. 2, no. 7937, pp. 683–684, 1975. View at Scopus
  9. L. K. Srivastava, S. B. Bajwa, R. L. Johnson, and R. K. Mishra, “Interaction of L-prolyl-L-leucyl glycinamide with dopamine D2 receptor: evidence for modulation of agonist affinity states in bovine striatal membranes,” Journal of Neurochemistry, vol. 50, no. 3, pp. 960–968, 1988. View at Scopus
  10. L. G. Miller and A. J. Kastin, “MIF-1 and Tyr-MIF-1 do not alter GABA binding on the GABAa receptor,” Brain Research Bulletin, vol. 25, no. 6, pp. 917–918, 1990. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Gulati and H. N. Bhargava, “Effect of melanotropin release inhibiting factor on changes by haloperidol and centbutindole in cerebral cortical 5-hydroxytryptamine receptors,” Pharmacology, vol. 41, no. 2, pp. 98–106, 1990. View at Scopus
  12. O. Pucilowski, A. Plaznik, and W. Kostowski, “MIF-1 facilitates passive avoidance retention,” Polish Journal of Pharmacology and Pharmacy, vol. 34, no. 1–3, pp. 107–113, 1982. View at Scopus
  13. M. A. Spirtes, C. W. Christensen, C. T. Harston, and A. J. Kastin, “α-MSH and MIF-I effects on cGMP levels in various rat brain regions,” Brain Research, vol. 144, no. 1, pp. 189–193, 1978. View at Publisher · View at Google Scholar
  14. J. I. Morgan and T. Curran, “Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenes fos and jun,” Annual Review of Neuroscience, vol. 14, pp. 421–451, 1991.
  15. R.-H. Chen, P. C.-H. Juo, T. Curran, and J. Blenis, “Phosphorylation of c-Fos at the C-terminus enhances its transforming activity,” Oncogene, vol. 12, no. 7, pp. 1493–1502, 1996.
  16. W. A. Banks and A. J. Kastin, “Opposite direction of transport across the blood-brain barrier for Tyr-MIF-1 and MIF-1: comparison with morphine,” Peptides, vol. 15, no. 1, pp. 23–29, 1994. View at Publisher · View at Google Scholar
  17. K. J. Kovács, “Measurement of immediate-early gene activation- c-fos and beyond,” Journal of Neuroendocrinology, vol. 20, no. 6, pp. 665–672, 2008. View at Publisher · View at Google Scholar · View at PubMed
  18. K. J. Kovács, “c-Fos as a transcription factor: a stressful (re)view from a functional map,” Neurochemistry International, vol. 33, no. 4, pp. 287–297, 1998. View at Publisher · View at Google Scholar
  19. N. J. Abbott, “Cellular composition of the blood-brain barrier,” in The Blood-Brain Barrier: Understanding the Regulatory Gatekeeper between Brain and Body, A. J. Kastin and W. Pan, Eds., The Henry Stewart Talk Series, The Biomedical & Life Sciences Collection, London, UK, 2008.
  20. I. Szirmai and T. Kovács, “Parkinson syndrome and cognitive disorders,” Ideggyógyászati Szemle, vol. 55, no. 7-8, pp. 220–225, 2002.
  21. S. D. Vann, M. W. Brown, J. T. Erichsen, and J. P. Aggleton, “Using Fos imaging in the rat to reveal the anatomical extent of the disruptive effects of fornix lesions,” The Journal of Neuroscience, vol. 20, no. 21, pp. 8144–8152, 2000.
  22. M. Vergnes, “Lesions of the cingular cortex, behavior in the open-field and interspecific aggression behavior in rats,” Comptes Rendus des Séances de la Société de Biologie et de Ses Filiales, vol. 166, no. 6, pp. 933–935, 1972.
  23. S. M. El-Shenawy, O. M. E. Abdel-Salam, A. R. Baiuomy, S. El-Batran, and M. S. Arbid, “Studies on the anti-inflammatory and anti-nociceptive effects of melatonin in the rat,” Pharmacological Research, vol. 46, no. 3, pp. 235–243, 2002. View at Publisher · View at Google Scholar
  24. Z. M. Weil, A. K. Hotchkiss, M. L. Gatien, S. Pieke-Dahl, and R. J. Nelson, “Melatonin receptor (MT1) knockout mice display depression-like behaviors and deficits in sensorimotor gating,” Brain Research Bulletin, vol. 68, no. 6, pp. 425–429, 2006. View at Publisher · View at Google Scholar · View at PubMed
  25. A. J. Kastin, S. Viosca, R. M. Nair, A. V. Shally, and M. C. Miller, “Interactions between pineal, hypothalamus, and pituitary involving melatonin, MSH release-inhibiting factor and MSH,” Endocrinology, vol. 91, no. 5, pp. 1323–1328, 1972.
  26. D. H. O'Connor, M. M. Fukui, M. A. Pinsk, and S. Kastner, “Attention modulates responses in the human lateral geniculate nucleus,” Nature Neuroscience, vol. 5, no. 11, pp. 1203–1209, 2002. View at Publisher · View at Google Scholar · View at PubMed
  27. B. E. Beckwith, C. A. Sandman, and A. J. Kastin, “Influence of three short-chain peptides (α-MSH, MSH/ACTH 4-10, MIF-I on) dimensional attention,” Pharmacology, Biochemistry & Behavior, vol. 5, supplement 1, pp. 11–16, 1976.
  28. I. Vidal-Gonzalez, B. Vidal-Gonzalez, S. L. Rauch, and G. J. Quirk, “Microstimulation reveals opposing influences of prelimbic and infralimbic cortex on the expression of conditioned fear,” Learning and Memory, vol. 13, no. 6, pp. 728–733, 2006. View at Publisher · View at Google Scholar · View at PubMed
  29. G. J. Quirk and D. Mueller, “Neural mechanisms of extinction learning and retrieval,” Neuropsychopharmacology, vol. 33, no. 1, pp. 56–72, 2008. View at Publisher · View at Google Scholar · View at PubMed
  30. K. Hefner, N. Whittle, J. Juhasz, et al., “Impaired fear extinction learning and cortico-amygdala circuit abnormalities in a common genetic mouse strain,” The Journal of Neuroscience, vol. 28, no. 32, pp. 8074–8085, 2008. View at Publisher · View at Google Scholar · View at PubMed
  31. L. O. Stratton and A. J. Kastin, “Increased acquisition of a complex appetitive task after MSH and MIF,” Pharmacology Biochemistry & Behavior, vol. 3, no. 5, pp. 901–904, 1975.
  32. G. S. Robertson and H. C. Fibiger, “Neuroleptics increase c-fos expression in the forebrain: contrasting effects of haloperidol and clozapine,” Neuroscience, vol. 46, no. 2, pp. 315–328, 1992. View at Publisher · View at Google Scholar
  33. R. H. Ehrensing and A. J. Kastin, “Melanocyte-stimulating hormone-release inhibiting hormone as a antidepressant. A pilot study,” Archives of General Psychiatry, vol. 30, no. 1, pp. 63–65, 1974.
  34. R. H. Ehrensing and A. J. Kastin, “Dose-related biphasic effect of prolyl-leucyl-glycinamide (MIF-I) in depression,” The American Journal of Psychiatry, vol. 135, no. 5, pp. 562–566, 1978.
  35. C. D. van der Velde, “Rapid clinical effectiveness of MIF-I in the treatment of major depressive illness,” Peptides, vol. 4, no. 3, pp. 297–300, 1983. View at Publisher · View at Google Scholar
  36. B. Moghaddam and B. S. Bunney, “Acute effects of typical and atypical antipsychotic drugs on the release of dopamine from prefrontal cortex, nucleus accumbens, and striatum of the rat: an in vivo microdialysis study,” Journal of Neurochemistry, vol. 54, no. 5, pp. 1755–1760, 1990.
  37. T. Zornoza, M. J. Cano-Cebrián, F. Martínez-García, A. Polache, and L. Granero, “Hippocampal dopamine receptors modulate cFos expression in the rat nucleus accumbens evoked by chemical stimulation of the ventral hippocampus,” Neuropharmacology, vol. 49, no. 7, pp. 1067–1076, 2005. View at Publisher · View at Google Scholar · View at PubMed
  38. S. Ceccatelli, M. J. Villar, M. Goldstein, and T. Hokfelt, “Expression of c-Fos immunoreactivity in transmitter-characterized neurons after stress,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 23, pp. 9569–9573, 1989. View at Publisher · View at Google Scholar
  39. S. Rivest, G. Torres, and C. Rivier, “Differential effects of central and peripheral injection of interleukin-1β on brain c-fos expression and neuroendocrine functions,” Brain Research, vol. 587, no. 1, pp. 13–23, 1992. View at Publisher · View at Google Scholar
  40. M. M. Hagan and D. E. Moss, “Differential effects of Tyr-MIF-1, MIF-1, and naloxone on peptide YY-induced hyperphagia,” Peptides, vol. 15, no. 2, pp. 243–245, 1994. View at Publisher · View at Google Scholar
  41. M. Fendt and M. S. Fanselow, “The neuroanatomical and neurochemical basis of conditioned fear,” Neuroscience and Biobehavioral Reviews, vol. 23, no. 5, pp. 743–760, 1999. View at Publisher · View at Google Scholar
  42. C. H. M. Beck and H. C. Fibiger, “Conditioned fear-induced changes in behavior and in the expression of the immediate early gene c-fos: with and without diazepam pretreatment,” The Journal of Neuroscience, vol. 15, no. 1, pp. 709–720, 1995.
  43. H. Fukunaga, M. Takahashi, H. Kaneto, and M. Yoshikawa, “Effects of Tyr-MIF-1 on stress-induced analgesia and the blockade of development of morphine tolerance by stress in mice,” Japanese Journal of Pharmacology, vol. 79, no. 2, pp. 231–235, 1999. View at Publisher · View at Google Scholar
  44. A. Hichami, F. Datiche, S. Ullah, et al., “Olfactory discrimination ability and brain expression of c-fos, Gir and Glut1 mRNA are altered in n3 fatty acid-depleted rats,” Behavioural Brain Research, vol. 184, no. 1, pp. 1–10, 2007. View at Publisher · View at Google Scholar · View at PubMed
  45. Z. Hlinak and I. Krejci, “Social recognition in male rats: age differences and modulation by MIF-I and alaptide,” Physiological Research, vol. 40, no. 1, pp. 59–67, 1991.