About this Journal Submit a Manuscript Table of Contents
International Journal of Peptides
Volume 2012 (2012), Article ID 236289, 8 pages
http://dx.doi.org/10.1155/2012/236289
Research Article

Amyloid Beta Peptide Slows Down Sensory-Induced Hippocampal Oscillations

1Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, UNAM-Campus Juriquilla, 76230 Juriquilla, QRO, Mexico
2Departamento de Farmacobiología, Cinvestav-IPN, Mexico City, DF, Mexico

Received 14 December 2011; Accepted 2 February 2012

Academic Editor: Ayman El-Faham

Copyright © 2012 Fernando Peña-Ortega and Ramón Bernal-Pedraza. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Braak and E. Braak, “Diagnostic criteria for neuropathologic assessment of Alzheimer's disease,” Neurobiology of Aging, vol. 18, no. 4, supplement 1, pp. S85–S88, 1997. View at Publisher · View at Google Scholar · View at Scopus
  2. L. F. Lue, Y. M. Kuo, A. E. Roher et al., “Soluble amyloid β peptide concentration as a predictor of synaptic change in Alzheimer's disease,” American Journal of Pathology, vol. 155, no. 3, pp. 853–862, 1999. View at Scopus
  3. J. Näslund, V. Haroutunian, R. Mohs et al., “Correlation between elevated levels of amyloid β-peptide in the brain and cognitive decline,” JAMA, vol. 283, no. 12, pp. 1571–1577, 2000. View at Scopus
  4. F. Peña, A. I. Gutiérrez-Lerma, R. Quiroz-Baez, and C. Arias, “The role of β-amyloid protein in synaptic function: implications for Alzheimer's disease therapy,” Current Neuropharmacology, vol. 4, no. 2, pp. 149–163, 2006. View at Publisher · View at Google Scholar
  5. D. J. Selkoe, “Alzheimer's disease is a synaptic failure,” Science, vol. 298, no. 5594, pp. 789–791, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Babiloni, G. B. Frisoni, M. Pievani et al., “Hippocampal volume and cortical sources of EEG alpha rhythms in mild cognitive impairment and Alzheimer disease,” NeuroImage, vol. 44, no. 1, pp. 123–135, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. W. L. Klein, G. A. Krafft, and C. E. Finch, “Targeting small A β oligomers: the solution to an Alzheimer's disease conundrum?” Trends in Neurosciences, vol. 24, no. 4, pp. 219–224, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Ondrejcak, I. Klyubin, N. W. Hu, A. E. Barry, W. K. Cullen, and M. J. Rowan, “Alzheimer's disease amyloid β-protein and synaptic function,” NeuroMolecular Medicine, vol. 12, no. 1, pp. 13–26, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. B. H. Bland and L. V. Colom, “Extrinsic and intrinsic properties underlying oscillation and synchrony in limbic cortex,” Progress in Neurobiology, vol. 41, no. 2, pp. 157–208, 1993. View at Publisher · View at Google Scholar · View at Scopus
  10. M. J. Kahana, D. Seelig, and J. R. Madsen, “Theta returns,” Current Opinion in Neurobiology, vol. 11, no. 6, pp. 739–744, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. W. Klimesch, “EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis,” Brain Research Reviews, vol. 29, no. 2-3, pp. 169–195, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. L. V. Colom, “Septal networks: relevance to theta rhythm, epilepsy and Alzheimer's disease,” Journal of Neurochemistry, vol. 96, no. 3, pp. 609–623, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. C. E. Jackson and P. J. Snyder, “Electroencephalography and event-related potentials as biomarkers of mild cognitive impairment and mild Alzheimer's disease,” Alzheimer's and Dementia, vol. 4, no. 1, supplement 1, pp. S137–S143, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. P. J. Uhlhaas and W. Singer, “Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology,” Neuron, vol. 52, no. 1, pp. 155–168, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Babiloni, E. Cassetta, G. Binetti et al., “Resting EEG sources correlate with attentional span in mild cognitive impairment and Alzheimer's disease,” European Journal of Neuroscience, vol. 25, no. 12, pp. 3742–3757, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Huang, L. O. Wahlund, T. Dierks, P. Julin, B. Winblad, and V. Jelic, “Discrimination of Alzheimer's disease and mild cognitive impairment by equivalent EEG sources: a cross-sectional and longitudinal study,” Clinical Neurophysiology, vol. 111, no. 11, pp. 1961–1967, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. T. D. R. Cummins, M. Broughton, and S. Finnigan, “Theta oscillations are affected by amnestic mild cognitive impairment and cognitive load,” International Journal of Psychophysiology, vol. 70, no. 1, pp. 75–81, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Jyoti, A. Plano, G. Riedel, and B. Platt, “EEG, activity, and sleep architecture in a transgenic AβPP swe/PSEN1A246E Alzheimer's disease mouse,” Journal of Alzheimer's Disease, vol. 22, no. 3, pp. 873–887, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Wang, S. Ikonen, K. Gurevicius, T. Van Groen, and H. Tanila, “Alteration of cortical EEG in mice carrying mutated human APP transgene,” Brain Research, vol. 943, no. 2, pp. 181–190, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Shin, “Theta rhythm heterogeneity in humans,” Clinical Neurophysiology, vol. 121, no. 3, pp. 456–457, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Akay, K. Wang, Y. M. Akay, A. Dragomir, and J. Wu, “Nonlinear dynamical analysis of carbachol induced hippocampal oscillations in mice,” Acta Pharmacologica Sinica, vol. 30, no. 6, pp. 859–867, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Balleza-Tapia, A. Huanosta-Gutiérrez, A. Márquez-Ramos, N. Arias, and F. Peña, “Amyloid β oligomers decrease hippocampal spontaneous network activity in an age-dependent manner,” Current Alzheimer Research, vol. 7, no. 5, pp. 453–462, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. R. N. Leão, L. V. Colom, L. Borgius, O. Kiehn, and A. Fisahn, “Medial septal dysfunction by Aβ-induced KCNQ channel-block in glutamatergic neurons,” Neurobiology of Aging. In press. View at Publisher · View at Google Scholar
  24. L. V. Colom, M. T. Castañeda, C. Bañuelos et al., “Medial septal β-amyloid 1–40 injections alter septo-hippocampal anatomy and function,” Neurobiology of Aging, vol. 31, no. 1, pp. 46–57, 2010. View at Publisher · View at Google Scholar
  25. V. Villette, F. Poindessous-Jazat, A. Simon et al., “Decreased rhythmic GABAergic septal activity and memory-associated θ oscillations after hippocampal amyloid-β pathology in the rat,” Journal of Neuroscience, vol. 30, no. 33, pp. 10991–11003, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. F. Peña, B. Ordaz, H. Balleza-Tapia et al., “Beta-amyloid protein (25–35) disrupts hippocampal network activity: role of Fyn-kinase,” Hippocampus, vol. 20, no. 1, pp. 78–96, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Adaya-Villanueva, B. Ordaz, H. Balleza-Tapia, A. Márquez-Ramos, and F. Peña-Ortega, “Beta-like hippocampal network activity is differentially affected by amyloid beta peptides,” Peptides, vol. 31, no. 9, pp. 1761–1766, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. F. Peña and R. Tapia, “Relationships among seizures, extracellular amino acid changes, and neurodegeneration induced by 4-aminopyridine in rat hippocampus: a microdialysis and electroencephalographic study,” Journal of Neurochemistry, vol. 72, no. 5, pp. 2006–2014, 1999. View at Publisher · View at Google Scholar · View at Scopus
  29. F. Peña and R. Tapia, “Seizures and neurodegeneration induced by 4-aminopyridine in rat hippocampus in vivo: role of glutamate- and GABA-mediated neurotransmission and of ion channels,” Neuroscience, vol. 101, no. 3, pp. 547–561, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates, Academic Press, 2005.
  31. L. Carmona-Aparicio, F. Peña, A. Borsodi, and L. Rocha, “Effects of nociceptin on the spread and seizure activity in the rat amygdala kindling model: their correlations with 3H-leucyl-nociceptin binding,” Epilepsy Research, vol. 77, no. 2-3, pp. 75–84, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. R. N. Romcy-Pereira, D. B. de Araujo, J. P. Leite, and N. Garcia-Cairasco, “A semi-automated algorithm for studying neuronal oscillatory patterns: a wavelet-based time frequency and coherence analysis,” Journal of Neuroscience Methods, vol. 167, no. 2, pp. 384–392, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Andrew and G. Fein, “Induced theta oscillations as biomarkers for alcoholism,” Clinical Neurophysiology, vol. 121, no. 3, pp. 350–358, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. J. S. Macdonald, S. Mathan, and N. Yeung, “Trial-by-trial variations in subjective attentional state are reflected in ongoing prestimulus EEG alpha oscillations,” Frontiers in Psychology, vol. 2, article 82, 2011.
  35. J. J. Wright and M. D. Craggs, “Intracranial self-stimulation, cortical arousal, and the sensorimotor neglect syndrome,” Experimental Neurology, vol. 65, no. 1, pp. 42–52, 1979. View at Scopus
  36. J. Czimmer, M. Million, and Y. Taché, “Urocortin 2 acts centrally to delay gastric emptying through sympathetic pathways while CRF and urocortin 1 inhibitory actions are vagal dependent in rats,” American Journal of Physiology, vol. 290, no. 3, pp. G511–G518, 2006. View at Publisher · View at Google Scholar
  37. O. Gunther, G. L. Kovacs, G. Szabo, H. Schwarzberg, and G. Telegdy, “Differential effect of vasopressin on open-field activity and passive avoidance behaviour following intracerebroventricular versus intracisternal administration in rats,” Acta Physiologica Hungarica, vol. 71, no. 2, pp. 203–206, 1988. View at Scopus
  38. O. Gunther and H. Schwarzberg, “Influence of intracerebroventricularly and intracisternally administered vasopressin on the hypothalamic self-stimulation rate of the rat,” Neuropeptides, vol. 10, no. 4, pp. 361–367, 1987. View at Scopus
  39. D. Harland, S. M. Gardiner, and T. Bennett, “Differential cardiovascular effects of centrally administered vasopressin in conscious Long Evans and Brattleboro rats,” Circulation Research, vol. 65, no. 4, pp. 925–933, 1989. View at Scopus
  40. H. Lee, N. N. Naughton, J. H. Woods, and M. C. H. Ko, “Characterization of scratching responses in rats following centrally administered morphine or bombesin,” Behavioural Pharmacology, vol. 14, no. 7, pp. 501–508, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Ozawa, M. Aono, and M. Moriga, “Central effects of pituitary adenylate cyclase activating polypeptide (PACAP) on gastric motility and emptying in rats,” Digestive Diseases and Sciences, vol. 44, no. 4, pp. 735–743, 1999. View at Scopus
  42. K. H. Park, J. P. Long, and J. G. Cannon, “Evaluation of the central and peripheral components for induction of postural hypotension by guanethidine, clonidine, dopamine2 receptor agonists and 5-hydroxytryptamine(1A) receptor agonists,” Journal of Pharmacology and Experimental Therapeutics, vol. 259, no. 3, pp. 1221–1230, 1991. View at Scopus
  43. E. A. Mugantseva and I. Y. Podolski, “Animal model of Alzheimer's disease: characteristics of EEG and memory,” Central European Journal of Biology, vol. 4, no. 4, pp. 507–514, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. X. Zou, D. Coyle, K. Wong-Lin, and L. Maguire, “Beta-amyloid induced changes in A-type K+ current can alter hippocampo-septal network dynamics,” Journal of Computational Neuroscience. In press. View at Publisher · View at Google Scholar
  45. R. Goutagny, J. Jackson, and S. Williams, “Self-generated theta oscillations in the hippocampus,” Nature Neuroscience, vol. 12, no. 12, pp. 1491–1493, 2009. View at Publisher · View at Google Scholar · View at Scopus