About this Journal Submit a Manuscript Table of Contents
International Journal of Plant Genomics
Volume 2012 (2012), Article ID 349527, 7 pages
http://dx.doi.org/10.1155/2012/349527
Research Article

A Pair of Partially Overlapping Arabidopsis Genes with Antagonistic Circadian Expression

Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK

Received 1 December 2011; Revised 26 January 2012; Accepted 27 January 2012

Academic Editor: Pierre Sourdille

Copyright © 2012 Andrea Kunova et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Vanhée-Brossollet and C. Vaquero, “Do natural antisense transcripts make sense in eukaryotes?” Gene, vol. 211, no. 1, pp. 1–9, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. J. S. Mattick, “Non-coding RNAs: the architects of eukaryotic complexity,” EMBO Reports, vol. 2, no. 11, pp. 986–991, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. K. Yamada, J. Lim, J. H. Dale et al., “Empirical analysis of transcriptional activity in the Arabidopsis genome,” Science, vol. 302, no. 5646, pp. 842–846, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. X. J. Wang, T. Gaasterland, and N. H. Chua, “Genome-wide prediction and identification of cis-natural antisense transcripts in Arabidopsis thaliana,” Genome biology, vol. 6, no. 4, p. R30, 2005.
  5. C. H. Jen, I. Michalopoulos, D. R. Westhead, and P. Meyer, “Natural antisense transcripts with coding capacity in Arabidopsis may have a regulatory role that is not linked to double-stranded RNA degradation,” Genome biology, vol. 6, no. 6, p. R51, 2005.
  6. O. Borsani, J. Zhu, P. E. Verslues, R. Sunkar, and J. K. Zhu, “Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis,” Cell, vol. 123, no. 7, pp. 1279–1291, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. S. Katiyar-Agarwal, R. Morgan, D. Dahlbeck et al., “A pathogen-inducible endogenous siRNA in plant immunity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 47, pp. 18002–18007, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. J. M. Alonso, A. N. Stepanova, T. J. Leisse et al., “Genome-wide insertional mutagenesis of Arabidopsis thaliana,” Science, vol. 301, no. 5633, pp. 653–657, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. A. F. Tissier, S. Marillonnet, V. Klimyuk et al., “Multiple independent defective Suppressor-mutator transposon insertions in Arabidopsis: a tool for functional genomics,” Plant Cell, vol. 11, no. 10, pp. 1841–1852, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. R. L. Scholl, S. T. May, and D. H. Ware, “Seed and molecular resources for Arabidopsis,” Plant Physiology, vol. 124, no. 4, pp. 1477–1480, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. K. D. Edwards, P. E. Anderson, A. Hall et al., “FLOWERING LOCUS C mediates natural variation in the high-temperature response of the Arabidopsis circadian clock,” Plant Cell, vol. 18, no. 3, pp. 639–650, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. Z. Vejlupkova and J. E. Fowler, “Maize DNA preps for undergraduate students: a robust method for PCR genotyping,” Maize Genetics Cooperation Newsletter, vol. 77, pp. 24–25, 2003.
  13. D. Swarbreck, C. Wilks, P. Lamesch et al., “The Arabidopsis Information Resource (TAIR): gene structure and function annotation,” Nucleic Acids Research, vol. 36, supplement 1, pp. D1009–D1014, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. A. Peragine, M. Yoshikawa, G. Wu, H. L. Albrecht, and R. S. Poethig, “SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis,” Genes and Development, vol. 18, no. 19, pp. 2368–2379, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. M. Stam, R. De Bruin, R. Van Blokland, R. A. L. Van Der Hoorn, J. N. M. Mol, and J. M. Kooter, “Distinct features of post-transcriptional gene silencing by antisense transgenes in single copy and inverted T-DNA repeat loci,” Plant Journal, vol. 21, no. 1, pp. 27–42, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. R. P. Hellens, E. Anne Edwards, N. R. Leyland, S. Bean, and P. M. Mullineaux, “pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation,” Plant Molecular Biology, vol. 42, no. 6, pp. 819–832, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. E. Zubko and P. Meyer, “A natural antisense transcript of the Petunia hybrida Sho gene suggests a role for an antisense mechanism in cytokinin regulation,” Plant Journal, vol. 52, no. 6, pp. 1131–1139, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. K. E. Shearwin, B. P. Callen, and J. B. Egan, “Transcriptional interference—a crash course,” Trends in Genetics, vol. 21, no. 6, pp. 339–345, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. E. M. Prescott and N. J. Proudfoot, “Transcriptional collision between convergent genes in budding yeast,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 13, pp. 8796–8801, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. S. K. Crosthwaite, “Circadian clocks and natural antisense RNA,” FEBS Letters, vol. 567, no. 1, pp. 49–54, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. C. Kramer, J. J. Loros, J. C. Dunlap, and S. K. Crosthwaite, “Role for antisense RNA in regulating circadian clock function in Neurospora crassa,” Nature, vol. 421, no. 6926, pp. 948–952, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. J. Dekker, K. Rippe, M. Dekker, and N. Kleckner, “Capturing chromosome conformation,” Science, vol. 295, no. 5558, pp. 1306–1311, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. A. K. Linnemann, A. E. Platts, and S. A. Krawetz, “Differential nuclear scaffold/matrix attachment marks expressed genes,” Human Molecular Genetics, vol. 18, no. 4, pp. 645–654, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. M. Shogren-Knaak, H. Ishii, J. M. Sun, M. J. Pazin, J. R. Davie, and C. L. Peterson, “Histone H4-K16 acetylation controls chromatin structure and protein interactions,” Science, vol. 311, no. 5762, pp. 844–847, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. K. Havas, A. Flaus, M. Phelan et al., “Generation of superhelical torsion by ATP-dependent chromatin remodeling activities,” Cell, vol. 103, no. 7, pp. 1133–1142, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. E. Zubko, A. Kunova, and P. Meyer, “Sense and antisense transcripts of convergent gene pairs in Arabidopsis thaliana can share a common polyadenylation region,” PLoS One, vol. 6, no. 2, Article ID e16769, 2011. View at Publisher · View at Google Scholar · View at PubMed