About this Journal Submit a Manuscript Table of Contents
International Journal of Plant Genomics
Volume 2012 (2012), Article ID 360598, 8 pages
http://dx.doi.org/10.1155/2012/360598
Research Article

Local Assemblies of Paired-End Reduced Representation Libraries Sequenced with the Illumina Genome Analyzer in Maize

1DuPont Agricultural Biotechnology, P.O. Box 80353, Wilmington, DE 19880, USA
2DuPont Pioneer, P.O. Box 1004, Johnston, IA 50131, USA

Received 22 May 2012; Accepted 15 September 2012

Academic Editor: Yunbi Xu

Copyright © 2012 Stéphane Deschamps et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. R. Eathington, T. M. Crosbie, M. D. Edwards, R. S. Reiter, and J. K. Bull, “Molecular markers in a commercial breeding program,” Crop Science, vol. 47, pp. S154–S163, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Shendure and H. Ji, “Next-generation DNA sequencing,” Nature Biotechnology, vol. 26, no. 10, pp. 1135–1145, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Deschamps and M. A. Campbell, “Utilization of next-generation sequencing platforms in plant genomics and genetic variant discovery,” Molecular Breeding, vol. 25, no. 4, pp. 553–570, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. R. K. Varshney, S. N. Nayak, G. D. May, and S. A. Jackson, “Next-generation sequencing technologies and their implications for crop genetics and breeding,” Trends in Biotechnology, vol. 27, no. 9, pp. 522–530, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. L. W. Hillier, G. T. Marth, A. R. Quinlan et al., “Whole-genome sequencing and variant discovery in C. elegans,” Nature Methods, vol. 5, no. 2, pp. 183–188, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. C. P. Van Tassell, T. P. L. Smith, L. K. Matukumalli et al., “SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries,” Nature Methods, vol. 5, no. 3, pp. 247–252, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. M. A. Gore, M. H. Wright, E. S. Ersoz, et al., “Large-scale discovery of gene-enriched SNPs,” The Plant Genome, vol. 2, pp. 121–133, 2009. View at Publisher · View at Google Scholar
  8. S. Deschamps, M. la Rota, J. P. Ratashak, et al., “Rapid genome-wide single nucleotide polymorphism discovery in soybean and rice via deep resequencing of reduced representation libraries with the Illumina Genome Analyzer,” The Plant Genome, vol. 3, pp. 53–68, 2010. View at Publisher · View at Google Scholar
  9. D. L. Hyten, Q. Song, E. W. Fickus et al., “High-throughput SNP discovery and assay development in common bean,” BMC Genomics, vol. 11, no. 1, article 475, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. X. Wu, C. Ren, T. Joshi, T. Vuong, D. Xu, and H. T. Nguyen, “SNP discovery by high-throughput sequencing in soybean,” BMC Genomics, vol. 11, no. 1, article 469, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Margulies, M. Egholm, W. E. Altman, et al., “Genome sequencing in microfabricated high-density picolitre reactors,” Nature, vol. 437, pp. 376–380, 2005.
  12. J. Eid, A. Fehr, J. Gray, et al., “Real-time DNA sequencing from single polymerase molecules,” Science, vol. 323, pp. 133–138, 2009.
  13. J. B. Hiatt, R. P. Patwardhan, E. H. Turner, C. Lee, and J. Shendure, “Parallel, tag-directed assembly of locally derived short sequence reads,” Nature Methods, vol. 7, no. 2, pp. 119–122, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. P. D. Etter, J. L. Preston, S. Bassham, W. A. Cresko, and E. A. Johnson, “Local de novo assembly of rad paired-end contigs using short sequencing reads,” PLoS ONE, vol. 6, no. 4, article e18561, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. E. M. Willing, M. Hoffmann, J. D. Klein, D. Weigel, and C. Dreyer, “Paired-end RAD-seq for de novo assembly and marker design without available reference,” Bioinformatics, vol. 27, no. 16, pp. 2187–2193, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, “Ultrafast and memory-efficient alignment of short DNA sequences to the human genome,” Genome Biology, vol. 10, no. 3, article R25, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. D. R. Zerbino and E. Birney, “Velvet: algorithms for de novo short read assembly using de Bruijn graphs,” Genome Research, vol. 18, no. 5, pp. 821–829, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. P. D. Rabinowicz, K. Schutz, N. Dedhia et al., “Differential methylation of genes and retrotransposons facilitates shotgun sequencing of the maize genome,” Nature Genetics, vol. 23, no. 3, pp. 305–308, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. P. D. Rabinowicz, R. Citek, M. A. Budiman et al., “Differential methylation of genes and repeats in land plants,” Genome Research, vol. 15, no. 10, pp. 1431–1440, 2005. View at Publisher · View at Google Scholar · View at Scopus