About this Journal Submit a Manuscript Table of Contents
International Journal of Proteomics
Volume 2012 (2012), Article ID 460261, 8 pages
http://dx.doi.org/10.1155/2012/460261
Research Article

Characterization of the Phosphoproteome in Human Bronchoalveolar Lavage Fluid

1Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
2Corporate Preclinical R&D, Analytics and Early Formulations Department, Chiesi Farmaceutici S.p.A., 43122 Parma, Italy
3Department of Neurology, The University of Tennessee Health Science Center, Memphis, 38163 TN, USA
4Charles B. Stout Neuroscience Mass Spectrometry Laboratory, The University of Tennessee Health Science Center, Memphis, 38163 TN, USA

Received 15 May 2012; Revised 28 June 2012; Accepted 1 July 2012

Academic Editor: Visith Thongboonkerd

Copyright © 2012 Francesco Giorgianni et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. A. Grimsrud, D. L. Swaney, C. D. Wenger, N. A. Beauchene, and J. J. Coon, “Phosphoproteomics for the masses,” ACS Chemical Biology, vol. 5, no. 1, pp. 105–119, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. B. Eyrich, A. Sickmann, and R. P. Zahedi, “Catch me if you can: mass spectrometry-based phosphoproteomics and quantification strategies,” Proteomics, vol. 11, no. 4, pp. 554–570, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. W. Zhou, M. M. Ross, A. Tessitore et al., “An initial characterization of the serum phosphoproteome,” Journal of Proteome Research, vol. 8, no. 12, pp. 5523–5531, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. S. D. Garbis, T. I. Roumeliotis, S. I. Tyritzis, K. M. Zorpas, K. Pavlakis, and C. A. Constantinides, “A novel multidimensional protein identification technology approach combining protein size exclusion prefractionation, peptide zwitterion-ion hydrophilic interaction chromatography, and nano-ultraperformance RP chromatography/nESI-MS2 for the in-depth analysis of the serum proteome and phosphoproteome: application to clinical sera derived from humans with benign prostate hyperplasia,” Analytical Chemistry, vol. 83, no. 3, pp. 708–718, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Carrascal, M. Gay, D. Ovelleiro, V. Casas, E. Gelpí, and J. Abian, “Characterization of the human plasma phosphoproteome using linear ion trap mass spectrometry and multiple search engines,” Journal of Proteome Research, vol. 9, no. 2, pp. 876–884, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. J. M. C. Bahl, S. S. Jensen, M. R. Larsen, and N. H. H. Heegaard, “Characterization of the human cerebrospinal fluid phosphoproteome by titanium dioxide affinity chromatography and mass spectrometry,” Analytical Chemistry, vol. 80, no. 16, pp. 6308–6316, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. X. Yuan and D. M. Desiderio, “Proteomics analysis of phosphotyrosyl-proteins in human lumbar cerebrospinal fluid,” Journal of Proteome Research, vol. 2, no. 5, pp. 476–487, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. M. D. Stone, X. Chen, T. McGowan et al., “Large-scale phosphoproteomics analysis of whole saliva reveals a distinct phosphorylation pattern,” Journal of Proteome Research, vol. 10, no. 4, pp. 1728–1736, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. Q. R. Li, K. X. Fan, R. X. Li et al., “A comprehensive and non-prefractionation on the protein level approach for the human urinary proteome: touching phosphorylation in urine,” Rapid Communications in Mass Spectrometry, vol. 24, no. 6, pp. 823–832, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Chen, D. Wang, C. Bai, and X. Wang, “Proteomics-based biomarkers in chronic obstructive pulmonary disease,” Journal of Proteome Research, vol. 9, no. 6, pp. 2798–2808, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Oumeraci, B. Schmidt, T. Wolf et al., “Bronchoalveolar lavage fluid of lung cancer patients: mapping the uncharted waters using proteomics technology,” Lung Cancer, vol. 72, no. 1, pp. 136–138, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Plymoth, C. G. Löfdahl, A. Ekberg-Jansson et al., “Protein expression patterns associated with progression of chronic obstructive pulmonary disease in bronchoalveolar lavage of smokers,” Clinical Chemistry, vol. 53, no. 4, pp. 636–644, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Landi, E. Bargagli, B. Magi et al., “Proteome analysis of bronchoalveolar lavage in pulmonary langerhans cell histiocytosis,” Journal of Clinical Bioinformatics, vol. 1, article 31, 2011.
  14. R. Wattiez and P. Falmagne, “Proteomics of bronchoalveolar lavage fluid,” Journal of Chromatography B, vol. 815, no. 1-2, pp. 169–178, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. F. Giorgianni, V. Mileo, L. Chen, D. M. Desiderio, and S. Beranova-Giorgianni, “Proteomics of human bronchoalveolar lavage fluid: discovery of biomarkers of chronic obstructive pulmonary disease (COPD) with difference gel electrophoresis (DIGE) and mass spectrometry (MS),” in Modern Methods in Protein Biochemistry, H. Tschesche, Ed., pp. 219–234, Walter De Gruyter, Berlin, Germany, 2012.
  16. P. J. Boersema, S. Mohammed, and A. J. R. Heck, “Phosphopeptide fragmentation and analysis by mass spectrometry,” Journal of Mass Spectrometry, vol. 44, no. 6, pp. 861–878, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Chen, B. Fang, F. Giorgianni, J. R. Gingrich, and S. Beranova-Giorgianni, “Investigation of phosphoprotein signatures of archived prostate cancer tissue specimens via proteomic analysis,” Electrophoresis, vol. 32, no. 15, pp. 1984–1991, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. A. J. Ghio, E. D. Hilborn, J. G. Stonehuerner et al., “Particulate matter in cigarette smoke alters iron homeostasis to produce a biological effect,” American Journal of Respiratory and Critical Care Medicine, vol. 178, no. 11, pp. 1130–1138, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. B. Janji, A. Giganti, V. de Corte et al., “Phosphorylation on Ser5 increases the F-actin-binding activity of L-plastin and promotes its targeting to sites of actin assembly in cells,” Journal of Cell Science, vol. 119, part 9, pp. 1947–1960, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Shinomiya, “Plastin family of actin-bundling proteins: its functions in leukocytes, neurons, intestines, and cancer,” International Journal of Cell Biology, vol. 2012, Article ID 213492, 2012. View at Publisher · View at Google Scholar · View at Scopus