About this Journal Submit a Manuscript Table of Contents
International Journal of Proteomics
Volume 2012 (2012), Article ID 515372, 8 pages
http://dx.doi.org/10.1155/2012/515372
Research Article

Functional Proteomic Profiling of Phosphodiesterases Using SeraFILE Separations Platform

ProFACT Proteomics Inc., 1 Deer Park Drive, Suite M, Monmouth Junction, NJ 08852, USA

Received 21 March 2012; Revised 29 June 2012; Accepted 2 July 2012

Academic Editor: Winston Patrick Kuo

Copyright © 2012 Amita R. Oka et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Mallick and B. Kuster, “Proteomics: a pragmatic perspective,” Nature Biotechnology, vol. 28, no. 7, pp. 695–709, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Pitteri and S. Hanash, “A systems approach to the proteomic identification of novel cancer biomarkers,” Disease Markers, vol. 28, no. 4, pp. 233–239, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. A. H. J. Danser, W. W. Batenburg, A. H. van den Meiracker, and S. M. Danilov, “ACE phenotyping as a first step toward personalized medicine for ACE inhibitors. Why does ACE genotyping not predict the therapeutic efficacy of ACE inhibition?” Pharmacology and Therapeutics, vol. 113, no. 3, pp. 607–618, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. S. M. Danilov, I. V. Balyasnikova, R. F. Albrecht, and O. A. Kost, “Simultaneous determination of ACE activity with 2 substrates provides information on the status of somatic ACE and allows detection of inhibitors in human blood,” Journal of Cardiovascular Pharmacology, vol. 52, no. 1, pp. 90–103, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Sanchez-Carbayo, “Antibody array-based technologies for cancer protein profiling and functional proteomic analyses using serum and tissue specimens,” Tumor Biology, vol. 31, no. 2, pp. 103–112, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. S. P. Gygi, B. Rist, S. A. Gerber, F. Turecek, M. H. Gelb, and R. Aebersold, “Quantitative analysis of complex protein mixtures using isotope-coded affinity tags,” Nature Biotechnology, vol. 17, no. 10, pp. 994–999, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. M. P. Washburn, D. Wolters, and J. R. Yates, “Large-scale analysis of the yeast proteome by multidimensional protein identification technology,” Nature Biotechnology, vol. 19, no. 3, pp. 242–247, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Ito, K. Ota, H. Kubota et al., “Roles for the two-hybrid system in exploration of the yeast protein interactome.,” Molecular & Cellular Proteomics, vol. 1, no. 8, pp. 561–566, 2002. View at Scopus
  9. G. MacBeath, “Protein microarrays and proteomics,” Nature Genetics, vol. 32, supplement 5, pp. 526–532, 2002. View at Scopus
  10. B. F. Cravatt, A. T. Wright, and J. W. Kozarich, “Activity-based protein profiling: from enzyme chemistry to proteomic chemistry,” Annual Review of Biochemistry, vol. 77, pp. 383–414, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Liu, M. P. Patricelli, and B. F. Cravatt, “Activity-based protein profiling: the serine hydrolases,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 26, pp. 14694–14699, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Bantscheff, D. Eberhard, Y. Abraham et al., “Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors,” Nature Biotechnology, vol. 25, no. 9, pp. 1035–1044, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Kültz, D. Fiol, N. Valkova, S. Gomez-Jimenez, S. Y. Chan, and J. Lee, “Functional genomics and proteomics of the cellular osmotic stress response in 'non-model' organisms,” Journal of Experimental Biology, vol. 210, no. 9, pp. 1593–1601, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. R. D. Gietz, B. Triggs-Raine, A. Robbins, K. C. Graham, and R. A. Woods, “Identification of proteins that interact with a protein of interest: applications of the yeast two-hybrid system,” Molecular and Cellular Biochemistry, vol. 172, no. 1-2, pp. 67–79, 1997. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Fromont-Racine, J. C. Rain, and P. Legrain, “Toward a functional analysis of the yeast genome through exhaustive two- hybrid screens,” Nature Genetics, vol. 16, no. 3, pp. 277–282, 1997. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Roy, J. Krupey, and M. Kuruc, “Composition and methods for proteomic investigations,” in US Patent and Trade Mark Office, P. Proteomics, Ed., ProFACT Proteomics, Monmouth Junction, NJ, USA, 2003.
  17. M. Conti and J. Beavo, “Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling,” Annual Review of Biochemistry, vol. 76, pp. 481–511, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. K. M. Torgersen, E. M. Aandahl, and K. Taskén, “Molecular architecture of signal complexes regulating immune cell function.,” Handbook of Experimental Pharmacology, no. 186, pp. 327–363, 2008. View at Scopus
  19. J. A. Beavo, M. Conti, and R. J. Heaslip, “Multiple cyclic nucleotide phosphodiesterases,” Molecular Pharmacology, vol. 46, no. 3, pp. 399–405, 1994. View at Scopus
  20. C. Lugnier, “Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents,” Pharmacology and Therapeutics, vol. 109, no. 3, pp. 366–398, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Beavo, S. H. Francis, and M. D. Houslay, Cyclic Nucleotide Phosphodiesterases in Health and Disease, CRC Press, Boca Raton, Fla, USA, 2006.
  22. J. Beavo, S. H. Francis, and M. D. Houslay, Cyclic Nucleotide Phosphodiesterases in Health and Disease, CRC Press/Taylor & Francis, Boca Raton, Fla, USA, 2007.
  23. Y. H. Jeon, Y. S. Heo, C. M. Kim et al., “Phosphodiesterase: overview of protein structures, potential therapeutic applications and recent progress in drug development,” Cellular and Molecular Life Sciences, vol. 62, no. 11, pp. 1198–1220, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. M. D. Houslay, P. Schafer, and K. Y. J. Zhang, “Keynote review: phosphodiesterase-4 as a therapeutic target,” Drug Discovery Today, vol. 10, no. 22, pp. 1503–1519, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. R. K. Sharma, A. M. Adachi, K. Adachi, and J. H. Wang, “Demonstration of bovine brain calmodulin-dependent cyclic nucleotide phosphodiesterase isozymes by monoclonal antibodies,” Journal of Biological Chemistry, vol. 259, no. 14, pp. 9248–9254, 1984. View at Scopus
  26. T. Kyoi, M. Oka, K. Noda, and Y. Ukai, “Phosphodiesterase inhibition by a gastroprotective agent irsogladine: preferential blockade of cAMP hydrolysis,” Life Sciences, vol. 75, no. 15, pp. 1833–1842, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Murashima, T. Tanaka, S. Hockman, and V. Manganiello, “Characterization of particulate cyclic nucleotide phosphodiesterases from bovine brain: purification of a distinct cGMP-stimulated isoenzyme,” Biochemistry, vol. 29, no. 22, pp. 5285–5292, 1990. View at Scopus
  28. K. Sankaran, I. Hanbauer, and W. Lovenberg, “Heat-stable low molecular weight form of phosphodiesterases from bovine pineal gland,” Proceedings of the National Academy of Sciences of the United States of America, vol. 75, no. 7, pp. 3188–3191, 1978. View at Scopus
  29. S. Kakiuchi, R. Yamazaki, Y. Teshima, and K. Uenishi, “Regulation of nucleoside cyclic 3':5' monophosphate phosphodiesterase activity from rat brain by a modulator and Ca2+,” Proceedings of the National Academy of Sciences of the United States of America, vol. 70, no. 12, 1973. View at Scopus
  30. J. A. Smoake, S. Y. Song, and W. Y. Cheung, “Cyclic 3',5' nucleotide phosphodiesterase. Distribution and developmental changes of the enzyme and its protein activator in mammalian tissues and cells,” Biochimica et Biophysica Acta, vol. 341, no. 2, pp. 402–411, 1974. View at Scopus
  31. R. S. Hansen and J. A. Beavo, “Differential recognition of calmodulin-enzyme complexes by a conformation-specific anti-calmodulin monoclonal antibody,” Journal of Biological Chemistry, vol. 261, no. 31, pp. 14636–14645, 1986. View at Scopus
  32. I. McPhee, L. Pooley, M. Lobban, G. Bolger, and M. D. Houslay, “Identification, characterization and regional distribution in brain of RPDE-6 (RNPDE4A5), a novel splice variant of the PDE4A cyclic AMP phosphodiesterase family,” Biochemical Journal, vol. 310, no. 3, pp. 965–974, 1995. View at Scopus
  33. F. Ohsawa, M. Yamauchi, H. Nagaso, S. Murakami, J. Baba, and A. Sawa, “Inhibitory effects of rolipram on partially purified phosphodiesterase 4 from rat brains,” Japanese Journal of Pharmacology, vol. 77, no. 2, pp. 147–154, 1998. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Shepherd, T. McSorley, A. E. Olsen et al., “Molecular cloning and subcellular distribution of the novel PDE4B4 cAMP-specific phosphodiesterase isoform,” Biochemical Journal, vol. 370, no. 2, pp. 429–438, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. ProFACT Proteomics, Reproducibility Of SeraFILE Derived Functional Proteomic Profiles, ProFACT Proteomics, http://www.profactproteomics.com/technical_notes.html, 2007.
  36. ProFACT Proteomics, Molecular profiling with SeraFILE, Nature Methods, Application Notes, ProFACT Proteomics, http://www.profactproteomics.com/technical_notes.html, 2008.
  37. ProFACT Proteomics, SeraFILE—A Biomarker and Drug Discovery Engine, ProFACT Proteomics, http://www.profactproteomics.com/serafile.html, 2004.
  38. ProFACT Proteomics, Functional Proteomic Signatures of the Ubiquitin / Proteasome Pathway, ProFACT Proteomics, http://www.profactproteomics.com/technical_notes.html, 2007.
  39. S. P. Chock and C. Y. Huang, “An optimized continuous assay for cAMP phosphodiesterase and calmodulin,” Analytical Biochemistry, vol. 138, no. 1, pp. 34–43, 1984. View at Scopus
  40. A. B. Burgin, O. T. Magnusson, J. Singh et al., “Design of phosphodiesterase 4D (PDE4D) allosteric modulators for enhancing cognition with improved safety,” Nature Biotechnology, vol. 28, no. 1, pp. 63–70, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. M. S. S. Alhamdani, C. Schröder, and J. D. Hoheisel, “Analysis conditions for proteomic profiling of mammalian tissue and cell extracts with antibody microarrays,” Proteomics, vol. 10, no. 17, pp. 3203–3207, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Farina, J. M. Dumonceau, J. L. Frossard, A. Hadengue, D. F. Hochstrasser, and P. Lescuyer, “Proteomic analysis of human bile from malignant biliary stenosis induced by pancreatic cancer,” Journal of Proteome Research, vol. 8, no. 1, pp. 159–169, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. B. Chen, J. Q. Dong, Y. J. Chen et al., “Two-dimensional electrophoresis for comparative proteomic analysis of human bile,” Hepatobiliary and Pancreatic Diseases International, vol. 6, no. 4, pp. 402–406, 2007. View at Scopus
  44. T. Z. Kristiansen, J. Bunkenborg, M. Gronborg et al., “A proteomic analysis of human bile,” Molecular and Cellular Proteomics, vol. 3, no. 7, pp. 715–728, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. E. I. Chen, D. Cociorva, J. L. Norris, and J. R. Yates, “Optimization of mass spectrometry-compatible surfactants for shotgun proteomics,” Journal of Proteome Research, vol. 6, no. 7, pp. 2529–2538, 2007. View at Publisher · View at Google Scholar · View at Scopus