About this Journal Submit a Manuscript Table of Contents
International Journal of Proteomics
Volume 2012 (2012), Article ID 867141, 10 pages
http://dx.doi.org/10.1155/2012/867141
Research Article

Ethanol Exposure Alters Protein Expression in a Mouse Model of Fetal Alcohol Spectrum Disorders

1Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
2Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
3Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
4Monarch LifeSciences, LLC., Indianapolis, IN 46202, USA
5Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA

Received 17 January 2012; Revised 1 April 2012; Accepted 1 April 2012

Academic Editor: Vladimir Uversky

Copyright © 2012 Stephen Mason et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. L. Moore and T. V. N. Persaud, The Developing Human: Clinically Oriented Embryology, Saunders, Philadelphia, Pa, USA, 5th edition, 1993.
  2. I. Autti-Rämö , Å. Fagerlund, N. Ervalahti, L. Loimu, M. Korkman, and H. E. Hoyme, “Fetal alcohol spectrum disorders in Finland: clinical delineation of 77 older children and adolescents,” American Journal of Medical Genetics, vol. 140, no. 2, pp. 137–143, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Guerri, A. Bazinet, and E. P. Riley, “Foetal alcohol spectrum disorders and alterations in brain and behaviour,” Alcohol and Alcoholism, vol. 44, no. 2, pp. 108–114, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. C. R. Goodlett and K. H. Horn, “Mechanisms of alcohol-induced damage to the developing nervous system,” Alcohol Research and Health, vol. 25, no. 3, pp. 175–184, 2001. View at Scopus
  5. C. R. Goodlett, K. H. Horn, and F. C. Zhou, “Alcohol teratogenesis: mechanisms of damage and strategies for intervention,” Experimental Biology and Medicine, vol. 230, no. 6, pp. 394–406, 2005. View at Scopus
  6. E. P. Riley, J. D. Thomas, C. R. Goodlett et al., “Fetal alcohol effects: mechanisms and treatment,” Alcoholism, vol. 25, no. 5, supplement, pp. 110S–116S, 2001.
  7. P. Fattoretti, C. Bertoni-Freddari, T. Casoli, G. Di Stefano, G. Giorgetti, and M. Solazzi, “Ethanol-induced decrease of the expression of glucose transport protein (Glut3) in the central nervous system as a predisposing condition to apoptosis: the effect of age,” Annals of the New York Academy of Sciences, vol. 1010, pp. 500–503, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. A. K. Snyder, F. Jiang, and S. P. Singh, “Effects of ethanol on glucose utilization by cultured mammalian embryos,” Alcoholism, vol. 16, no. 3, pp. 466–470, 1992. View at Publisher · View at Google Scholar · View at Scopus
  9. M. W. Miller and D. L. Dow-Edwards, “Structural and metabolic alterations in rat cerebral cortex induced by prenatal exposure to ethanol,” Brain Research, vol. 474, no. 2, pp. 316–326, 1988. View at Scopus
  10. I. A. Shibley Jr. and S. N. Pennington, “Metabolic and mitotic changes associated with the fetal alcohol syndrome,” Alcohol and Alcoholism, vol. 32, no. 4, pp. 423–434, 1997. View at Scopus
  11. C. Guerri, C. Montoliu, and J. Renau-Piqueras, “Involvement of free radical mechanism in the toxic effects of alcohol: implications for fetal alcohol syndrome,” Advances in Experimental Medicine and Biology, vol. 366, pp. 291–305, 1994. View at Scopus
  12. F. C. Zhou, Q. Zhao, Y. Liu et al., “Alteration of gene expression by alcohol exposure at early neurulation,” BMC Genomics, vol. 12, article 124, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Liu, Y. Balaraman, G. Wang, K. P. Nephew, and F. C. Zhou, “Alcohol exposure alters DNA methylation profiles in mouse embryos at early neurulation,” Epigenetics, vol. 4, no. 7, pp. 500–511, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. J. B. Mason and S. W. Choi, “Effects of alcohol on folate metabolism: implications for carcinogenesis,” Alcohol, vol. 35, no. 3, pp. 235–241, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. L. L. Wang, Z. Zhang, Q. Li et al., “Ethanol exposure induces differential microRNA and target gene expression and teratogenic effects which can be suppressed by folic acid supplementation,” Human Reproduction, vol. 24, no. 3, pp. 562–579, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Xu, Y. Tang, and Y. Li, “Effect of folic acid on prenatal alcohol-induced modification of brain proteome in mice,” British Journal of Nutrition, vol. 99, no. 3, pp. 455–461, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. N. El Banna, M. F. Picciano, and J. Simon, “Effects of chronic alcohol consumption and iron deficiency on maternal folate status and reproductive outcome in mice,” Journal of Nutrition, vol. 113, no. 10, pp. 2059–2070, 1983. View at Scopus
  18. M. W. Miller, A. J. I. Roskams, and J. R. Connor, “Iron regulation in the developing rat brain: effect of in utero ethanol exposure,” Journal of Neurochemistry, vol. 65, no. 1, pp. 373–380, 1995. View at Scopus
  19. T. M. Donohue Jr., “The ubiquitin-proteasome system and its role in ethanol-induced disorders,” Addiction Biology, vol. 7, no. 1, pp. 15–28, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Lowe, A. Blanchard, K. Morrell et al., “Ubiquitin is a common factor in intermediate filament inclusion bodies of diverse type in man, including those of Parkinson's disease, Pick's disease, and Alzheimer's disease, as well as Rosenthal fibres in cerebellar astrocytomas, cytoplasmic bodies in muscle, and Mallory bodies in alcoholic liver disease,” Journal of Pathology, vol. 155, no. 1, pp. 9–15, 1988. View at Scopus
  21. M. P. Bousquet-Dubouch, S. Nguen, D. Bouyssié et al., “Chronic ethanol feeding affects proteasome-interacting proteins,” Proteomics, vol. 9, no. 13, pp. 3609–3622, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. M. L. Green, A. V. Singh, Y. Zhang, K. A. Nemeth, K. K. Sulik, and T. B. Knudsen, “Reprogramming of genetic networks during initiation of the Fetal Alcohol Syndrome,” Developmental Dynamics, vol. 236, no. 2, pp. 613–631, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. M. L. Hard, M. Abdolell, B. H. Robinson, and G. Koren, “Gene-expression analysis after alcohol exposure in the developing mouse,” Journal of Laboratory and Clinical Medicine, vol. 145, no. 1, pp. 47–54, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Gutala, J. Wang, S. Kadapakkam, Y. Hwang, M. Ticku, and M. D. Li, “Microarray analysis of ethanol-treated cortical neurons reveals disruption of genes related to the ubiquitin-proteasome pathway and protein synthesis,” Alcoholism, vol. 28, no. 12, pp. 1779–1788, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Incerti, J. Vink, R. Roberson, I. Benassou, D. Abebe, and C. Y. Spong, “Prevention of the alcohol-induced changes in brain-derived neurotrophic factor expression using neuroprotective peptides in a model of fetal alcohol syndrome,” American Journal of Obstetrics and Gynecology, vol. 202, no. 5, pp. 457.e1–457.e4, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. F. C. Zhou and L. N. Wei, “Expression of cellular retinoc acid-binding protein I is specific to neurons in adult transgenic mouse brain,” Gene Expression Patterns, vol. 1, no. 1, pp. 67–72, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. B. Anthony, F. C. Zhou, T. Ogawa, C. R. Goodlett, and J. Ruiz, “Alcohol exposure alters cell cycle and apoptotic events during early neurulation,” Alcohol and Alcoholism, vol. 43, no. 3, pp. 261–273, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. N. D. E. Greene, K. Y. Leung, R. Wait, S. Begum, M. J. Dunn, and A. J. Copp, “Differential protein expression at the stage of neural tube closure in the mouse embryo,” The Journal of Biological Chemistry, vol. 277, no. 44, pp. 41645–41651, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Ogawa, M. Kuwagata, J. Ruiz, and F. C. Zhou, “Differential teratogenic effect of alcohol on embryonic development between C57BL/6 and DBA/2 mice: a new view,” Alcoholism, vol. 29, no. 5, pp. 855–863, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. D. A. New, “Whole-embryo culture and the study of mammalian embryos during organogenesis,” Biological reviews of the Cambridge Philosophical Society, vol. 53, no. 1, pp. 81–122, 1978. View at Scopus
  31. W. S. Webster, D. A. Walsh, S. E. McEwen, and A. H. Lipson, “Some teratogenic properties of ethanol and acetaldehyde in C57BL/6J mice: implications for the study of the fetal alcohol syndrome,” Teratology, vol. 27, no. 2, pp. 231–243, 1983. View at Scopus
  32. F. Hoffman, “Generalized depressants of the central nervous system,” in A Handbook of Drug and Alcohol Abuse, F. Hoffman and A. Hoffman, Eds., pp. 95–128, Oxford University Press, New York, NY, USA, 1975.
  33. B. Lindblad and R. Olsson, “Unusually high levels of blood alcohol?” JAMA, vol. 236, no. 14, pp. 1600–1602, 1976. View at Publisher · View at Google Scholar · View at Scopus
  34. G. Candiano, M. Bruschi, L. Musante et al., “Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis,” Electrophoresis, vol. 25, no. 9, pp. 1327–1333, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. R. E. Higgs, M. D. Knierman, V. Gelfanova, J. P. Butler, and J. E. Hale, “Comprehensive label-free method for the relative quantification of proteins from biological samples,” Journal of Proteome Research, vol. 4, no. 4, pp. 1442–1450, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. B. Anthony, S. Vinci-Booher, L. Wetherill, R. Ward, C. Goodlett, and F. C. Zhou, “Alcohol-induced facial dysmorphology in C57BL/6 mouse models of fetal alcohol spectrum disorder,” Alcohol, vol. 44, no. 7-8, pp. 659–671, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. Chen, N. C. Ozturk, L. Ni, C. Goodlett, and F. C. Zhou, “Strain differences in developmental vulnerability to Alcohol exposure via embryo culture in mice,” Alcoholism, vol. 35, no. 7, pp. 1293–1304, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. W. J. McBride, J. A. Schultz, M. W. Kimpel et al., “Differential effects of ethanol in the nucleus accumbens shell of alcohol-preferring (P), alcohol-non-preferring (NP) and Wistar rats: a proteomics study,” Pharmacology Biochemistry and Behavior, vol. 92, no. 2, pp. 304–313, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. “Reorganizing the protein space at the Universal Protein Resource (UniProt),” Nucleic Acids Research, vol. 40, pp. D71–D75, 2012.
  40. Y. Peng, K. H. H. Kwok, P. H. Yang et al., “Ascorbic acid inhibits ROS production, NF-κB activation and prevents ethanol-induced growth retardation and microencephaly,” Neuropharmacology, vol. 48, no. 3, pp. 426–434, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. B. M. Altura, A. Gebrewold, A. Zhang, and B. T. Altura, “Ethanol induces rapid lipid peroxidation and activation of nuclear factor-kappa B in cerebral vascular smooth muscle: relation to alcohol-induced brain injury in rats,” Neuroscience Letters, vol. 325, no. 2, pp. 95–98, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. M. J. Druse, N. F. Tajuddin, R. A. Gillespie, and P. Le, “The effects of ethanol and the serotonin1A agonist ipsapirone on the expression of the serotonin1A receptor and several antiapoptotic proteins in fetal rhombencephalic neurons,” Brain Research, vol. 1092, no. 1, pp. 79–86, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. P. Mandrekar, D. Catalano, and G. Szabo, “Alcohol-induced regulation of nuclear regulatory factor-κβ in human monocytes,” Alcoholism, vol. 21, no. 6, pp. 988–994, 1997. View at Scopus
  44. D. R. Armant and D. E. Saunders, “Exposure of embryonic cells to alcohol: contrasting effects during preimplantation and postimplantation development,” Seminars in Perinatology, vol. 20, no. 2, pp. 127–139, 1996. View at Scopus
  45. J. R. Connor, “Iron acquisition and expression of iron regulatory proteins in the developing brain: manipulation by ethanol exposure, iron deprivation and cellular dysfunction,” Developmental Neuroscience, vol. 16, no. 5-6, pp. 233–247, 1994. View at Scopus
  46. T. D. Tran, et al., “Maternal iron deficiency produces differential learning outcomes and cell loss in a rat model of fetal alcohol spectrum disorders,” Alcoholism, vol. 35, article 38A, 2011.
  47. R. L. Bell, M. W. Kimpel, Z. A. Rodd et al., “Protein expression changes in the nucleus accumbens and amygdala of inbred alcohol-preferring rats given either continuous or scheduled access to ethanol,” Alcohol, vol. 40, no. 1, pp. 3–17, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. F. Orosz, G. Wágner, K. Liliom et al., “Enhanced association of mutant triosephosphate isomerase to red cell membranes and to brain microtubules,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 3, pp. 1026–1031, 2000. View at Publisher · View at Google Scholar · View at Scopus
  49. R. Hoffrogge, S. Mikkat, C. Scharf et al., “2-DE proteome analysis of a proliferating and differentiating human neuronal stem cell line (ReNcell VM),” Proteomics, vol. 6, no. 6, pp. 1833–1847, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. K. Kultima, A. M. Nyström, B. Scholz, A. L. Gustafson, L. Dencker, and M. Stigson, “Valproic acid teratogenicity: a toxicogenomics approach,” Environmental Health Perspectives, vol. 112, no. 12, pp. 1225–1235, 2004. View at Scopus
  51. F. Ikeda and I. Dikic, “Atypical ubiquitin chains: new molecular signals. “Protein Modifications: Beyond the Usual Suspects” Review Series,” EMBO Reports, vol. 9, no. 6, pp. 536–542, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. J. B. Tomas and R. J. Wyman, “Mutations altering synaptic connectivity between identified neurons in Drosophila,” Journal of Neuroscience, vol. 4, no. 2, pp. 530–538, 1984. View at Scopus
  53. C. E. Oh, R. McMahon, S. Benzer, and M. A. Tanouye, “bendless, a Drosophila gene affecting neuronal connectivity, encodes a ubiquitin-conjugating enzyme homolog,” Journal of Neuroscience, vol. 14, no. 5, pp. 3166–3179, 1994. View at Scopus
  54. M. G. Muralidhar and J. B. Thomas, “The Drosophila bendless gene encodes a neural protein related to ubiquitin-conjugating enzymes,” Neuron, vol. 11, no. 2, pp. 253–266, 1993. View at Scopus
  55. M. Watanabe, H. Mizusawa, and H. Takahashi, “Developmental regulation of rat Ubc13 and Uev1B genes in the nervous system,” Gene Expression Patterns, vol. 7, no. 5, pp. 614–619, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. Y. Zhu, Y. Sun, X. O. Mao, K. L. Jin, and D. A. Greenberg, “Expression of poly(C)-binding proteins is differentially regulated by hypoxia and ischemia in cortical neurons,” Neuroscience, vol. 110, no. 2, pp. 191–198, 2002. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Kiledjian, X. Wang, and S. A. Liebhaber, “Identification of two KH domain proteins in the α-globin mRNP stability complex,” The EMBO Journal, vol. 14, no. 17, pp. 4357–4364, 1995. View at Scopus
  58. J. Nio-Kobayashi, H. Takahashi-Iwanaga, and T. Iwanaga, “Immunohistochemical localization of six galectin subtypes in the mouse digestive tract,” Journal of Histochemistry and Cytochemistry, vol. 57, no. 1, pp. 41–50, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. Y. Peng, P. H. Yang, S. S. M. Ng, C. T. Lum, H. F. Kung, and M. C. Lin, “Protection of Xenopus laevis embryos against alcohol-induced delayed gut maturation and growth retardation by peroxiredoxin 5 and catalase,” Journal of Molecular Biology, vol. 340, no. 4, pp. 819–827, 2004. View at Publisher · View at Google Scholar · View at Scopus