About this Journal Submit a Manuscript Table of Contents
International Journal of Polymer Science
Volume 2010 (2010), Article ID 138686, 20 pages
http://dx.doi.org/10.1155/2010/138686
Review Article

Polymers for Fabricating Nerve Conduits

Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996, USA

Received 16 June 2010; Accepted 12 August 2010

Academic Editor: Lichun Lu

Copyright © 2010 Shanfeng Wang and Lei Cai. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. S. Belkas, M. S. Shoichet, and R. Midha, “Peripheral nerve regeneration through guidance tubes,” Neurological Research, vol. 26, no. 2, pp. 151–160, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Noble, C. A. Munro, V. S. S. V. Prasad, and R. Midha, “Analysis of upper and lower extremity peripheral nerve injuries in a population of patients with multiple injuries,” Journal of Trauma—Injury, Infection and Critical Care, vol. 45, no. 1, pp. 116–122, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. R. V. Bellamkonda, “Peripheral nerve regeneration: an opinion on channels, scaffolds and anisotropy,” Biomaterials, vol. 27, no. 19, pp. 3515–3518, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. G. C. W. de Ruiter, M. J. A. Malessy, M. J. Yaszemski, A. J. Windebank, and R. J. Spinner, “Designing ideal conduits for peripheral nerve repair,” Neurosurgical Focus, vol. 26, no. 2, pp. 1–9, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. V. Chiono, C. Tonda-Turo, and G. Ciardelli, “Artificial scaffolds for peripheral nerve reconstruction,” International Review of Neurobiology, vol. 87, pp. 173–198, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Ciardelli and V. Chiono, “Materials for peripheral nerve regeneration,” Macromolecular Bioscience, vol. 6, no. 1, pp. 13–26, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. C. E. Schmidt and J. B. Leach, “Neural tissue engineering: strategies for repair and regeneration,” Annual Review of Biomedical Engineering, vol. 5, pp. 293–347, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. R. D. Fields, J. M. Le Beau, F. M. Longo, and M. H. Ellisman, “Nerve regeneration through artificial tubular implants,” Progress in Neurobiology, vol. 33, no. 2, pp. 87–134, 1989. View at Scopus
  9. R. Bellamkonda and P. Aebischer, “Review: tissue engineering in the nervous system,” Biotechnology and Bioengineering, vol. 43, no. 7, pp. 543–554, 1994. View at Scopus
  10. C. A. Heath and G. E. Rutkowski, “The development of bioartificial nerve grafts for peripheral-nerve regeneration,” Trends in Biotechnology, vol. 16, no. 4, pp. 163–168, 1998. View at Publisher · View at Google Scholar · View at Scopus
  11. G. R. D. Evans, “Challenges to nerve regeneration,” Seminars in Surgical Oncology, vol. 19, no. 3, pp. 312–318, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Y. Kannan, H. J. Salacinski, P. E. M. Butler, and A. M. Seifalian, “Artificial nerve conduits in peripheral-nerve repair,” Biotechnology and Applied Biochemistry, vol. 41, no. 3, pp. 193–200, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. M. F. Meek and J. H. Coert, “US Food and Drug Administration /Conformit Europe-approved absorbable nerve conduits for clinical repair of peripheral and cranial nerves,” Annals of Plastic Surgery, vol. 60, no. 4, pp. 466–472, 2008. View at Scopus
  14. S. Ichihara, Y. Inada, and T. Nakamura, “Artificial nerve tubes and their application for repair of peripheral nerve injury: an update of current concepts,” Injury, vol. 39, no. 4, pp. 29–39, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. E. O. Johnson and P. N. Soucacos, “Nerve repair: experimental and clinical evaluation of biodegradable artificial nerve guides,” Injury, vol. 39, pp. S30–S36, 2008. View at Scopus
  16. L. A. Pfister, M. Papaloïzos, H. P. Merkle, and B. Gander, “Nerve conduits and growth factor delivery in peripheral nerve repair,” Journal of the Peripheral Nervous System, vol. 12, no. 2, pp. 65–82, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. X. Jiang, S. H. Lim, H.-Q. Mao, and S. Y. Chew, “Current applications and future perspectives of artificial nerve conduits,” Experimental Neurology, vol. 223, pp. 86–101, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. Y.-C. Huang and Y.-Y. Huang, “Biomaterials and strategies for nerve regeneration,” Artificial Organs, vol. 30, no. 7, pp. 514–522, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. H. M. Geller and J. W. Fawcett, “Building a bridge: engineering spinal cord repair,” Experimental Neurology, vol. 174, no. 2, pp. 125–136, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. L. N. Novikova, L. N. Novikov, and J.-O. Kellerth, “Biopolymers and biodegradable smart implants for tissue regeneration after spinal cord injury,” Current Opinion in Neurology, vol. 16, no. 6, pp. 711–715, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. N. N. Madigan, S. McMahon, T. O'Brien, M. J. Yaszemski, and A. J. Windebank, “Current tissue engineering and novel therapeutic approaches to axonal regeneration following spinal cord injury using polymer scaffolds,” Respiratory Physiology and Neurobiology, vol. 169, no. 2, pp. 183–199, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. D. R. Nisbet, K. E. Crompton, M. K. Horne, D. I. Finkelstein, and J. S. Forsythe, “Neural tissue engineering of the CNS using hydrogels,” Journal of Biomedical Materials Research Part B, vol. 87, no. 1, pp. 251–263, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Yan, F. Zhang, M. B. Chen, and W. C. Lineaweaver, “Conduit luminal additives for peripheral nerve repair,” International Review of Neurobiology, vol. 87, pp. 199–225, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. M. B. Chen, F. Zhang, and W. C. Lineaweaver, “Luminal fillers in nerve conduits for peripheral nerve repair,” Annals of Plastic Surgery, vol. 57, no. 4, pp. 462–471, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. W. Wang, S. Itoh, A. Matsuda et al., “Enhanced nerve regeneration through a bilayered chitosan tube: the effect of introduction of glycine spacer into the CYIGSR sequence,” Journal of Biomedical Materials Research Part A, vol. 85, no. 4, pp. 919–928, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. X. Wang, W. Hu, Y. Cao, J. Yao, J. Wu, and X. Gu, “Dog sciatic nerve regeneration across a 30-mm defect bridged by a chitosan/PGA artificial nerve graft,” Brain, vol. 128, no. 8, pp. 1897–1910, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. D.-Y. Wang and Y.-Y. Huang, “Fabricate coaxial stacked nerve conduits through soft lithography and molding processes,” Journal of Biomedical Materials Research Part A, vol. 85, no. 2, pp. 434–438, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Wang, Q. Ao, Y. Wei et al., “Physical properties and biocompatibility of a porous chitosan-based fiber-reinforced conduit for nerve regeneration,” Biotechnology Letters, vol. 29, no. 11, pp. 1697–1702, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Freier, R. Montenegro, H. S. Koh, and M. S. Shoichet, “Chitin-based tubes for tissue engineering in the nervous system,” Biomaterials, vol. 26, no. 22, pp. 4624–4632, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. F. Xie, F. L. Qing, B. Gu, K. Liu, and X. S. Guo, “In vitro and in vivo evaluation of a biodegradable chitosan-PLA composite peripheral nerve guide conduit material,” Microsurgery, vol. 28, no. 6, pp. 471–479, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. L. A. Pfister, M. Papaloïzos, H. P. Merkle, and B. Gander, “Hydrogel nerve conduits produced from alginate/chitosan complexes,” Journal of Biomedical Materials Research Part A, vol. 80, no. 4, pp. 932–937, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. O. Alluin, C. Wittmann, T. Marqueste et al., “Functional recovery after peripheral nerve injury and implantation of a collagen guide,” Biomaterials, vol. 30, no. 3, pp. 363–373, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. S.-T. Li, S. J. Archibald, C. Krarup, and R. D. Madison, “Peripheral nerve repair with collagen conduits,” Clinical Materials, vol. 9, no. 3-4, pp. 195–200, 1992. View at Scopus
  34. L. J. Chamberlain, I. V. Yannas, H.-P. Hsu, and M. Spector, “Connective tissue response to tubular implants for peripheral nerve regeneration: the role of myofibroblasts,” Journal of Comparative Neurology, vol. 417, no. 4, pp. 415–430, 2000. View at Publisher · View at Google Scholar · View at Scopus
  35. B. A. Harley, M. H. Spilker, J. W. Wu et al., “Optimal degradation rate for collagen chambers used for regeneration of peripheral nerves over long gaps,” Cells Tissues Organs, vol. 176, no. 1-3, pp. 153–165, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. L. Yao, G. C.W. de Ruiter, H. Wang et al., “Controlling dispersion of axonal regeneration using a multichannel collagen nerve conduit,” Biomaterials, vol. 31, no. 22, pp. 5789–5797, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. H. Okamoto, K.-I. Hata, H. Kagami et al., “Recovery process of sciatic nerve defect with novel bioabsorbable collagen tubes packed with collagen filaments in dogs,” Journal of Biomedical Materials Research Part A, vol. 92, no. 3, pp. 859–868, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Bozkurt, R. Deumens, C. Beckmann et al., “In vitro cell alignment obtained with a Schwann cell enriched microstructured nerve guide with longitudinal guidance channels,” Biomaterials, vol. 30, no. 2, pp. 169–179, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Bozkurt, G. A. Brook, S. Moellers et al., “In vitro assessment of axonal growth using dorsal root ganglia explants in a novel three-dimensional collagen matrix,” Tissue Engineering, vol. 13, no. 12, pp. 2971–2979, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. V. Kroehne, I. Heschel, F. Schügner, D. Lasrich, J. W. Bartsch, and H. Jockusch, “Use of a novel collagen matrix with oriented pore structure for muscle cell differentiation in cell culture and in grafts,” Journal of Cellular and Molecular Medicine, vol. 12, no. 5A, pp. 1640–1648, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. M. R. Ahmed, S. Vairamuthu, MD. Shafiuzama, S. H. Basha, and R. Jayakumar, “Microwave irradiated collagen tubes as a better matrix for peripheral nerve regeneration,” Brain Research, vol. 1046, no. 1-2, pp. 55–67, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. M. R. Ahmed, U. Venkateshwarlu, and R. Jayakumar, “Multilayered peptide incorporated collagen tubules for peripheral nerve repair,” Biomaterials, vol. 25, no. 13, pp. 2585–2594, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. X. Hu, J. Huang, Z. Ye et al., “A novel scaffold with longitudinally oriented microchannels promotes peripheral nerve regeneration,” Tissue Engineering Part A, vol. 15, no. 11, pp. 3297–3308, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. X. Wang, J. Zhang, H. Chen, and Q. Wang, “Preparation and characterization of collagen-based composite conduit for peripheral nerve regeneration,” Journal of Applied Polymer Science, vol. 112, no. 6, pp. 3652–3662, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. E. Gámez, Y. Goto, K. Nagata, T. Iwaki, T. Sasaki, and T. Matsuda, “Photofabricated gelatin-based nerve conduits: nerve tissue regeneration potentials,” Cell Transplantation, vol. 13, no. 5, pp. 549–564, 2004. View at Scopus
  46. J.-Y. Chang, T.-Y. Ho, H.-C. Lee et al., “Highly permeable genipin-cross-linked gelatin conduits enhance peripheral nerve regeneration,” Artificial Organs, vol. 33, no. 12, pp. 1075–1085, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. B.-S. Liu, “Fabrication and evaluation of a biodegradable proanthocyanidin-crosslinked gelatin conduit in peripheral nerve repair,” Journal of Biomedical Materials Research Part A, vol. 87, no. 4, pp. 1092–1102, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. M.-C. Lu, S.-W. Hsiang, T.-Y. Lai, C.-H. Yao, L.-Y. Lin, and Y.-S. Chen, “Influence of cross-linking degree of a biodegradable genipin-cross-linked gelatin guide on peripheral nerve regeneration,” Journal of Biomaterials Science, Polymer Edition, vol. 18, no. 7, pp. 843–863, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. Y.-S. Chen, J.-Y. Chang, C.-Y. Cheng, F.-J. Tsai, C.-H. Yao, and B.-S. Liu, “An in vivo evaluation of a biodegradable genipin-cross-linked gelatin peripheral nerve guide conduit material,” Biomaterials, vol. 26, no. 18, pp. 3911–3918, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. J.-Y. Chang, J.-H. Lin, C.-H. Yao, J.-H. Chen, T.-Y. Lai, and Y.-S. Chen, “In vivo evaluation of a biodegradable EDC/NHS-cross-linked gelatin peripheral nerve guide conduit material,” Macromolecular Bioscience, vol. 7, no. 4, pp. 500–507, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. K. Miyamoto, M. Sasaki, Y. Minamisawa, Y. Kurahashi, H. Kano, and S.-I. Ishikawa, “Evaluation of in vivo biocompatibility and biodegradation of photo-crosslinked hyaluronate hydrogels (HADgels),” Journal of Biomedical Materials Research Part A, vol. 70, no. 4, pp. 550–559, 2004. View at Scopus
  52. Y. Sakai, Y. Matsuyama, K. Takahashi et al., “New artificial nerve conduits made with photo-crosslinked hyaluronic acid for peripheral nerve regeneration,” Bio-Medical Materials and Engineering, vol. 17, no. 3, pp. 191–197, 2007. View at Scopus
  53. J. B. Leach and C. E. Schmidt, “Characterization of protein release from photo-crosslinkable hyaluronic acid-polyethylene glycol hydrogel tissue engineering scaffolds,” Biomaterials, vol. 26, no. 2, pp. 125–135, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. K. Jansen, J. F. A. van der Werff, P. B. van Wachem, J.-P. A. Nicolai, L. F. M. H. de Leij, and M. J. A. Van Luyn, “A hyaluronan-based nerve guide: in vitro cytotoxicity, subcutaneous tissue reactions, and degradation in the rat,” Biomaterials, vol. 25, no. 3, pp. 483–489, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. Y. Yang, F. Ding, J. Wu et al., “Development and evaluation of silk fibroin-based nerve grafts used for peripheral nerve regeneration,” Biomaterials, vol. 28, no. 36, pp. 5526–5535, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Madduri, M. Papaloïzos, and B. Gander, “Trophically and topographically functionalized silk fibroin nerve conduits for guided peripheral nerve regeneration,” Biomaterials, vol. 31, no. 8, pp. 2323–2334, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. X. Wen and P. A. Tresco, “Effect of filament diameter and extracellular matrix molecule precoating on neurite outgrowth and Schwann cell behavior on multifilament entubulation bridging device in vitro,” Journal of Biomedical Materials Research Part A, vol. 76, no. 3, pp. 626–637, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. K. W. Broadhead, R. Biran, and P. A. Tresco, “Hollow fiber membrane diffusive permeability regulates encapsulated cell line biomass, proliferation, and small molecule release,” Biomaterials, vol. 23, no. 24, pp. 4689–4699, 2002. View at Publisher · View at Google Scholar · View at Scopus
  59. C.-B. Jenq and R. E. Coggeshall, “Nerve regeneration through holey silicone tubes,” Brain Research, vol. 361, no. 1-2, pp. 233–241, 1985. View at Scopus
  60. L. R. Williams, “Exogenous fibrin matrix precursors stimulate the temporal progress of nerve regeneration within a silicone chamber,” Neurochemical Research, vol. 12, no. 10, pp. 851–860, 1987. View at Scopus
  61. J. Cai, X. Peng, K. D. Nelson, R. Eberhart, and G. M. Smith, “Permeable guidance channels containing microfilament scaffolds enhance axon growth and maturation,” Journal of Biomedical Materials Research Part A, vol. 75, no. 2, pp. 374–386, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. G. Lundborg, L. Dahlin, D. Dohi, M. Kanje, and N. Terada, “A new type of 'bioartificial' nerve graft for bridging extended defects in nerves,” Journal of Hand Surgery, vol. 22, no. 3, pp. 299–303, 1997. View at Publisher · View at Google Scholar · View at Scopus
  63. J. B. Phillips, S. C. J. Bunting, S. M. Hall, and R. A. Brown, “Neural tissue engineering: a self-organizing collagen guidance conduit,” Tissue Engineering, vol. 11, no. 9-10, pp. 1611–1617, 2005. View at Publisher · View at Google Scholar · View at Scopus
  64. B. R. Seckel, D. Jones, K. J. Hekimian, K.-K. Wang, D. P. Chakalis, and P. D. Costas, “Hyaluronic acid through a new injectable nerve guide delivery system enhances peripheral nerve regeneration in the rat,” Journal of Neuroscience Research, vol. 40, no. 3, pp. 318–324, 1995. View at Publisher · View at Google Scholar · View at Scopus
  65. R. D. Madison, C. da Silva, and P. Dikkes, “Peripheral nerve regeneration with entubulation repair: comparison of biodegradable nerve guides versus polyethylene tubes and the effects of a laminin-containing gel,” Experimental Neurology, vol. 95, no. 2, pp. 378–390, 1987. View at Scopus
  66. P. D. Dalton, L. Flynn, and M. S. Shoichet, “Manufacture of poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) hydrogel tubes for use as nerve guidance channels,” Biomaterials, vol. 23, no. 18, pp. 3843–3851, 2002. View at Publisher · View at Google Scholar · View at Scopus
  67. R. Midha, C. A. Munro, P. D. Dalton, C. H. Tator, and M. S. Shoichet, “Growth factor enhancement of peripheral nerve regeneration through a novel synthetic hydrogel tube,” Journal of Neurosurgery, vol. 99, no. 3, pp. 555–565, 2003. View at Scopus
  68. A. Piotrowicz and M. S. Shoichet, “Nerve guidance channels as drug delivery vehicles,” Biomaterials, vol. 27, no. 9, pp. 2018–2027, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. J. S. Belkas, C. A. Munro, M. S. Shoichet, and R. Midha, “Peripheral nerve regeneration through a synthetic hydrogel nerve tube,” Restorative Neurology and Neuroscience, vol. 23, no. 1, pp. 19–29, 2005. View at Scopus
  70. Y. Luo, P. D. Dalton, and M. S. Shoichet, “Investigating the properties of novel poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) hydrogel hollow fiber membranes,” Chemistry of Materials, vol. 13, no. 11, pp. 4087–4093, 2001. View at Publisher · View at Google Scholar · View at Scopus
  71. E. C. Tsai, P. D. Dalton, M. S. Shoichet, and C. H. Tator, “Synthetic hydrogel guidance channels facilitate regeneration of adult rat brainstem motor axons after complete spinal cord transection,” Journal of Neurotrauma, vol. 21, no. 6, pp. 789–804, 2004. View at Publisher · View at Google Scholar · View at Scopus
  72. Y. Katayama, R. Montenegro, T. Freier, R. Midha, J. S. Belkas, and M. S. Shoichet, “Coil-reinforced hydrogel tubes promote nerve regeneration equivalent to that of nerve autografts,” Biomaterials, vol. 27, no. 3, pp. 505–518, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. E. C. Tsai, P. D. Dalton, M. S. Shoichet, and C. H. Tator, “Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection,” Biomaterials, vol. 27, no. 3, pp. 519–533, 2006. View at Publisher · View at Google Scholar · View at Scopus
  74. P. M. George, R. Saigal, M. W. Lawlor et al., “Three-dimensional conductive constructs for nerve regeneration,” Journal of Biomedical Materials Research Part A, vol. 91, no. 2, pp. 519–527, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. G. Verreck, I. Chun, Y. Li et al., “Preparation and physicochemical characterization of biodegradable nerve guides containing the nerve growth agent sabeluzole,” Biomaterials, vol. 26, no. 11, pp. 1307–1315, 2005. View at Publisher · View at Google Scholar · View at Scopus
  76. L. E. Kokai, A. M. Ghaznavi, and K. G. Marra, “Incorporation of double-walled microspheres into polymer nerve guides for the sustained delivery of glial cell line-derived neurotrophic factor,” Biomaterials, vol. 31, no. 8, pp. 2313–2322, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. C.-J. Chang, “Effects of nerve growth factor from genipin-crosslinked gelatin in polycaprolactone conduit on peripheral nerve regeneration—in vitro and in vivo,” Journal of Biomedical Materials Research Part A, vol. 91, no. 2, pp. 586–596, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. C. L. A. M. Vleggeert-Lankamp, G. C. W. de Ruiter, J. F. C. Wolfs et al., “Pores in synthetic nerve conduits are beneficial to regeneration,” Journal of Biomedical Materials Research Part A, vol. 80, no. 4, pp. 965–982, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. V. Chiono, G. Ciardelli, G. Vozzi et al., “Enzymatically-modified melt-extruded guides for peripheral nerve repair,” Engineering in Life Sciences, vol. 8, no. 3, pp. 226–237, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. M. D. Bender, J. M. Bennett, R. L. Waddell, J. S. Doctor, and K. G. Marra, “Multi-channeled biodegradable polymer/CultiSpher composite nerve guides,” Biomaterials, vol. 25, no. 7-8, pp. 1269–1278, 2004. View at Publisher · View at Google Scholar · View at Scopus
  81. L. Cai and S. Wang, “Poly(ε-caprolactone) acrylates synthesized using a facile method for fabricating networks to achieve controllable physicochemical properties and tunable cell responses,” Polymer, vol. 51, no. 1, pp. 164–177, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. S. Wang, M. J. Yaszemski, J. A. Gruetzmacher, and L. Lu, “Photo-crosslinked poly(ε-caprolactone fumarate) networks: roles of crystallinity and crosslinking density in determining mechanical properties,” Polymer, vol. 49, no. 26, pp. 5692–5699, 2008. View at Publisher · View at Google Scholar · View at Scopus
  83. S. Wang, M. J. Yaszemski, A. M. Knight, J. A. Gruetzmacher, A. J. Windebank, and L. Lu, “Photo-crosslinked poly(ε-caprolactone fumarate) networks for guided peripheral nerve regeneration: material properties and preliminary biological evaluations,” Acta Biomaterialia, vol. 5, no. 5, pp. 1531–1542, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. M. B. Runge, M. Dadsetan, J. Baltrusaitis et al., “The development of electrically conductive polycaprolactone fumarate-polypyrrole composite materials for nerve regeneration,” Biomaterials, vol. 31, no. 23, pp. 5916–5926, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. S. Wang, Q. Cai, J. Hou et al., “Acceleration effect of basic fibroblast growth factor on the regeneration of peripheral nerve through a 15-mm gap,” Journal of Biomedical Materials Research Part A, vol. 66, no. 3, pp. 522–531, 2003. View at Scopus
  86. G. E. Rutkowski and C. A. Heath, “Development of a bioartificial nerve graft. II. Nerve regeneration in vitro,” Biotechnology Progress, vol. 18, no. 2, pp. 373–379, 2002. View at Publisher · View at Google Scholar · View at Scopus
  87. W. F. A. den Dunnen, B. van der Lei, J. M. Schakenraad et al., “Poly(dl-lactide-ε-caprolactone) nerve guides perform better than autologous nerve grafts,” Microsurgery, vol. 17, no. 7, pp. 348–357, 1997. View at Publisher · View at Google Scholar · View at Scopus
  88. D. Radulescu, S. Dhar, C. M. Young et al., “Tissue engineering scaffolds for nerve regeneration manufactured by ink-jet technology,” Materials Science and Engineering C, vol. 27, no. 3, pp. 534–539, 2007. View at Publisher · View at Google Scholar · View at Scopus
  89. A. Yamada, F. Niikura, and K. Ikuta, “A three-dimensional microfabrication system for biodegradable polymers with high resolution and biocompatibility,” Journal of Micromechanics and Microengineering, vol. 18, no. 2, Article ID 025035, 2008. View at Publisher · View at Google Scholar · View at Scopus
  90. T. Toba, T. Nakamura, Y. Shimizu et al., “Regeneration of canine peroneal nerve with the use of a polyglycolic acid-collagen tube filled with laminin-soaked collagen sponge: a comparative study of collagen sponge and collagen fibers as filling materials for nerve conduits,” Journal of Biomedical Materials Research, vol. 58, no. 6, pp. 622–630, 2001. View at Publisher · View at Google Scholar · View at Scopus
  91. M. Yoshitani, S. Fukuda, S.-I. Itoi et al., “Experimental repair of phrenic nerve using a polyglycolic acid and collagen tube,” Journal of Thoracic and Cardiovascular Surgery, vol. 133, no. 3, pp. 726–e3, 2007. View at Publisher · View at Google Scholar · View at Scopus
  92. S. Tanaka, T. Takigawa, S. Ichihara, and T. Nakamura, “Mechanical properties of the bioabsorbable polyglycolic acid-collagen nerve guide tube,” Polymer Engineering and Science, vol. 46, no. 10, pp. 1461–1467, 2006. View at Publisher · View at Google Scholar · View at Scopus
  93. T. Nakamura, Y. Inada, S. Fukuda et al., “Experimental study on the regeneration of peripheral nerve gaps through a polyglycolic acid-collagen (PGA-collagen) tube,” Brain Research, vol. 1027, no. 1-2, pp. 18–29, 2004. View at Publisher · View at Google Scholar · View at Scopus
  94. S. Ichihara, Y. Inada, A. Nakada et al., “Development of new nerve guide tube for repair of long nerve defects,” Tissue Engineering Part C, vol. 15, no. 3, pp. 387–402, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. Y. Wang, G. A. Ameer, B. J. Sheppard, and R. Langer, “A tough biodegradable elastomer,” Nature Biotechnology, vol. 20, no. 6, pp. 602–606, 2002. View at Publisher · View at Google Scholar · View at Scopus
  96. C. A. Sundback, J. Y. Shyu, Y. Wang et al., “Biocompatibility analysis of poly(glycerol sebacate) as a nerve guide material,” Biomaterials, vol. 26, no. 27, pp. 5454–5464, 2005. View at Publisher · View at Google Scholar · View at Scopus
  97. D. F. Kalbermatten, P. J. Kingham, D. Mahay et al., “Fibrin matrix for suspension of regenerative cells in an artificial nerve conduit,” Journal of Plastic, Reconstructive & Aesthetic Surgery, vol. 61, no. 6, pp. 669–675, 2008. View at Publisher · View at Google Scholar · View at Scopus
  98. R. C. Young, G. Terenghi, and M. Wiberg, “Poly-3-hydroxybutyrate (PHB): a resorbable conduit for long-gap repair in peripheral nerves,” British Journal of Plastic Surgery, vol. 55, no. 3, pp. 235–240, 2002. View at Publisher · View at Google Scholar · View at Scopus
  99. A. Mosahebi, M. Wiberg, and G. Terenghi, “Addition of fibronectin to alginate matrix improves peripheral nerve regeneration in tissue-engineered conduits,” Tissue Engineering, vol. 9, no. 2, pp. 209–218, 2003. View at Publisher · View at Google Scholar · View at Scopus
  100. Y.-Z. Bian, Y. Wang, G. Aibaidoula, G.-Q. Chen, and Q. Wu, “Evaluation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) conduits for peripheral nerve regeneration,” Biomaterials, vol. 30, no. 2, pp. 217–225, 2009. View at Publisher · View at Google Scholar · View at Scopus
  101. D. Yucel, G. T. Kose, and V. Hasirci, “Polyester based nerve guidance conduit design,” Biomaterials, vol. 31, no. 7, pp. 1596–1603, 2010. View at Publisher · View at Google Scholar · View at Scopus
  102. S. H. Oh, J. H. Kim, K. S. Song et al., “Peripheral nerve regeneration within an asymmetrically porous PLGA/Pluronic F127 nerve guide conduit,” Biomaterials, vol. 29, no. 11, pp. 1601–1609, 2008. View at Publisher · View at Google Scholar · View at Scopus
  103. S. H. Oh and J. H. Lee, “Fabrication and characterization of hydrophilized porous PLGA nerve guide conduits by a modified immersion precipitation method,” Journal of Biomedical Materials Research Part A, vol. 80, no. 3, pp. 530–538, 2007. View at Publisher · View at Google Scholar · View at Scopus
  104. C.-J. Chang, S.-H. Hsu, H.-J. Yen, H. Chang, and S.-K. Hsu, “Effects of unidirectional permeability in asymmetric poly(dl-lactic acid-co-glycolic acid) conduits on peripheral nerve regeneration: an in vitro and in vivo study,” Journal of Biomedical Materials Research Part B, vol. 83, no. 1, pp. 206–215, 2007. View at Publisher · View at Google Scholar · View at Scopus
  105. C.-J. Chang and S.-H. Hsu, “The effect of high outflow permeability in asymmetric poly(dl-lactic acid-co-glycolic acid) conduits for peripheral nerve regeneration,” Biomaterials, vol. 27, no. 7, pp. 1035–1042, 2006. View at Publisher · View at Google Scholar · View at Scopus
  106. X. Wen and P. A. Tresco, “Fabrication and characterization of permeable degradable poly(dl-lactide-co-glycolide) (PLGA) hollow fiber phase inversion membranes for use as nerve tract guidance channels,” Biomaterials, vol. 27, no. 20, pp. 3800–3809, 2006. View at Publisher · View at Google Scholar · View at Scopus
  107. Z. H. Zhou, X. P. Liu, and L. H. Liu, “Preparation and biocompatibility of poly(l-lactide-co-glycolide) scaffold materials for nerve conduits,” Designed Monomers and Polymers, vol. 11, no. 5, pp. 447–456, 2008. View at Publisher · View at Google Scholar · View at Scopus
  108. L. He, Y. Zhang, C. Zeng et al., “Manufacture of PLGA multiple-channel conduits with precise hierarchical pore architectures and in vitro/vivo evaluation for spinal cord injury,” Tissue Engineering Part C, vol. 15, no. 2, pp. 243–255, 2009. View at Publisher · View at Google Scholar · View at Scopus
  109. G. C. de Ruiter, I. A. Onyeneho, E. T. Liang et al., “Methods for in vitro characterization of multichannel nerve tubes,” Journal of Biomedical Materials Research Part A, vol. 84, no. 3, pp. 643–651, 2008. View at Publisher · View at Google Scholar · View at Scopus
  110. M. J. Moore, J. A. Friedman, E. B. Lewellyn et al., “Multiple-channel scaffolds to promote spinal cord axon regeneration,” Biomaterials, vol. 27, no. 3, pp. 419–429, 2006. View at Publisher · View at Google Scholar · View at Scopus
  111. Y. Yang, L. de Laporte, C. B. Rives et al., “Neurotrophin releasing single and multiple lumen nerve conduits,” Journal of Controlled Release, vol. 104, no. 3, pp. 433–446, 2005. View at Publisher · View at Google Scholar · View at Scopus
  112. C. Sundback, T. Hadlock, M. Cheney, and J. Vacanti, “Manufacture of porous polymer nerve conduits by a novel low-pressure injection molding process,” Biomaterials, vol. 24, no. 5, pp. 819–830, 2003. View at Publisher · View at Google Scholar · View at Scopus
  113. T. Hadlock, C. Sundback, D. Hunter, M. Cheney, and J. P. Vacanti, “A polymer foam conduit seeded with Schwann cells promotes guided peripheral nerve regeneration,” Tissue Engineering, vol. 6, no. 2, pp. 119–127, 2000. View at Publisher · View at Google Scholar · View at Scopus
  114. M. S. Widmer, P. K. Gupta, L. Lu et al., “Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration,” Biomaterials, vol. 19, no. 21, pp. 1945–1955, 1998. View at Scopus
  115. T. B. Bini, S. Gao, T. C. Tan et al., “Electrospun poly(l-lactide-co-glycolide) biodegradable polymer nanofibre tubes for peripheral nerve regeneration,” Nanotechnology, vol. 15, no. 11, pp. 1459–1464, 2004. View at Publisher · View at Google Scholar · View at Scopus
  116. T. B. Bini, S. Gao, X. Xu, S. Wang, S. Ramakrishna, and K. W. Leong, “Peripheral nerve regeneration by microbraided poly(l-lactide-co-glycolide) biodegradable polymer fibers,” Journal of Biomedical Materials Research Part A, vol. 68, no. 2, pp. 286–295, 2004. View at Scopus
  117. T. Hadlock, J. Elisseeff, R. Langer, J. Vacanti, and M. Cheney, “A tissue-engineered conduit for peripheral nerve repair,” Archives of Otolaryngology—Head & Neck Surgery, vol. 124, no. 10, pp. 1081–1086, 1998. View at Scopus
  118. X.-K. Li, S.-X. Cai, B. Liu et al., “Characteristics of PLGA-gelatin complex as potential artificial nerve scaffold,” Colloids and Surfaces B, vol. 57, no. 2, pp. 198–203, 2007. View at Publisher · View at Google Scholar · View at Scopus
  119. K. Nakayama, K. Takakuda, Y. Koyama et al., “Enhancement of peripheral nerve regeneration using bioabsorbable polymer tubes packed with fibrin gel,” Artificial Organs, vol. 31, no. 7, pp. 500–508, 2007. View at Publisher · View at Google Scholar · View at Scopus
  120. M.-C. Lu, Y.-T. Huang, J.-H. Lin et al., “Evaluation of a multi-layer microbraided polylactic acid fiber-reinforced conduit for peripheral nerve regeneration,” Journal of Materials Science: Materials in Medicine, vol. 20, no. 5, pp. 1175–1180, 2009. View at Publisher · View at Google Scholar · View at Scopus
  121. G. R. D. Evans, K. Brandt, M. S. Widmer et al., “In vivo evaluation of poly(l-lactic acid) porous conduits for peripheral nerve regeneration,” Biomaterials, vol. 20, no. 12, pp. 1109–1115, 1999. View at Publisher · View at Google Scholar · View at Scopus
  122. G. R. D. Evans, K. Brandt, S. Katz et al., “Bioactive poly(l-lactic acid) conduits seeded with Schwann cells for peripheral nerve regeneration,” Biomaterials, vol. 23, no. 3, pp. 841–848, 2002. View at Publisher · View at Google Scholar · View at Scopus
  123. C. F. da Silva, R. Madison, and P. Dikkes, “An in vivo model to quantify motor and sensory peripheral nerve regeneration using bioresorbable nerve guide tubes,” Brain Research, vol. 342, no. 2, pp. 307–315, 1985. View at Scopus
  124. A. Goraltchouk, T. Freier, and M. S. Shoichet, “Synthesis of degradable poly(l-lactide-co-ethylene glycol) porous tubes by liquid-liquid centrifugal casting for use as nerve guidance channels,” Biomaterials, vol. 26, no. 36, pp. 7555–7563, 2005. View at Publisher · View at Google Scholar · View at Scopus
  125. S. Wang, A. C. A. Wan, X. Xu et al., “A new nerve guide conduit material composed of a biodegradable poly(phosphoester),” Biomaterials, vol. 22, no. 10, pp. 1157–1169, 2001. View at Publisher · View at Google Scholar · View at Scopus
  126. A. C. A. Wan, H.-Q. Mao, S. Wang, K. W. Leong, L. K. L. L. Ong, and H. Yu, “Fabrication of poly(phosphoester) nerve guides by immersion precipitation and the control of porosity,” Biomaterials, vol. 22, no. 10, pp. 1147–1156, 2001. View at Publisher · View at Google Scholar · View at Scopus
  127. X. Xu, W.-C. Yee, P. Y. K. Hwang et al., “Peripheral nerve regeneration with sustained release of poly(phosphoester) microencapsulated nerve growth factor within nerve guide conduits,” Biomaterials, vol. 24, no. 13, pp. 2405–2412, 2003. View at Publisher · View at Google Scholar · View at Scopus
  128. S. Wang, D. H. Kempen, G. C. W. de Ruiter et al., “Molecularly engineered photo-cross-linkable polymers with controlled physical properties for bone and nerve regeneration,” submitted.
  129. M. C. Dodla and R. V. Bellamkonda, “Differences between the effect of anisotropic and isotropic laminin and nerve growth factor presenting scaffolds on nerve regeneration across long peripheral nerve gaps,” Biomaterials, vol. 29, no. 1, pp. 33–46, 2008. View at Publisher · View at Google Scholar · View at Scopus
  130. Y.-T. Kim, V. K. Haftel, S. Kumar, and R. V. Bellamkonda, “The role of aligned polymer fiber-based constructs in the bridging of long peripheral nerve gaps,” Biomaterials, vol. 29, no. 21, pp. 3117–3127, 2008. View at Publisher · View at Google Scholar · View at Scopus
  131. H. Shen, Y. T. Kim, R. Bellamkonda, and S. Kumar, “Aligned biodegradable poly(lactide-co-glycolide) (PLGA) nano/micro filaments for guided neurite extension,” Polymeric Materials Science & Engineering, vol. 94, pp. 768–769, 2006.
  132. M. Lietz, A. Ullrich, C. Schulte-Eversum et al., “Physical and biological performance of a novel block copolymer nerve guide,” Biotechnology and Bioengineering, vol. 93, no. 1, pp. 99–109, 2006. View at Publisher · View at Google Scholar · View at Scopus
  133. M. Lietz, L. Dreesmann, M. Hoss, S. Oberhoffner, and B. Schlosshauer, “Neuro tissue engineering of glial nerve guides and the impact of different cell types,” Biomaterials, vol. 27, no. 8, pp. 1425–1436, 2006. View at Publisher · View at Google Scholar · View at Scopus
  134. D. Yin, X. Wang, Y. Yan, and R. Zhang, “Preliminary studies on peripheral nerve regeneration using a new polyurethane conduit,” Journal of Bioactive and Compatible Polymers, vol. 22, no. 2, pp. 143–159, 2007. View at Publisher · View at Google Scholar · View at Scopus
  135. T. Cui, Y. Yan, R. Zhang, L. Liu, W. Xu, and X. Wang, “Rapid prototyping of a double-layer polyurethane-collagen conduit for peripheral nerve regeneration,” Tissue Engineering Part C, vol. 15, no. 1, pp. 1–9, 2009. View at Publisher · View at Google Scholar · View at Scopus
  136. M. Borkenhagen, R. C. Stoll, P. Neuenschwander, U. W. Suter, and P. Aebischer, “In vivo performance of a new biodegradable polyester urethane system used as a nerve guidance channel,” Biomaterials, vol. 19, no. 23, pp. 2155–2165, 1998. View at Scopus
  137. S. Wang, L. Lu, J. A. Gruetzmacher, B. L. Currier, and M. J. Yaszemski, “Synthesis and characterizations of biodegradable and cross-linkable poly(ε-caprolactone fumarate), poly(ethylene glycol fumarate), and their amphiphilic copolymer,” Biomaterials, vol. 27, no. 6, pp. 832–841, 2006. View at Publisher · View at Google Scholar · View at Scopus
  138. E. Jabbari, S. Wang, L. Lu et al., “Synthesis, material properties, and biocompatibility of a novel self-cross-linkable poly(caprolactone fumarate) as an injectable tissue engineering scaffold,” Biomacromolecules, vol. 6, no. 5, pp. 2503–2511, 2005. View at Publisher · View at Google Scholar · View at Scopus
  139. L. Cai and S. Wang, “Elucidating colorization in the functionalization of hydroxyl-containing polymers using unsaturated anhydrides/acyl chlorides in the presence of triethylamine,” Biomacromolecules, vol. 11, no. 1, pp. 304–307, 2010. View at Publisher · View at Google Scholar · View at Scopus
  140. S. Wang, D. H. Kempen, N. K. Simha et al., “Photo-cross-linked hybrid polymer networks consisting of poly(propylene fumarate) and poly(caprolactone fumarate): controlled physical properties and regulated bone and nerve cell responses,” Biomacromolecules, vol. 9, no. 4, pp. 1229–1241, 2008. View at Publisher · View at Google Scholar · View at Scopus
  141. L. Cai and S. Wang, “Parabolic dependence of material properties and cell behavior on the composition of polymer networks via simultaneously controlling crosslinking density and crystallinity,” Biomaterials, vol. 31, pp. 7423–7434, 2010. View at Publisher · View at Google Scholar · View at Scopus
  142. S. Wang, L. Lu, J. A. Gruetzmacher, B. L. Currier, and M. J. Yaszemski, “A biodegradable and cross-linkable multiblock copolymer consisting of poly(propylene fumarate) and poly(ε-caprolactone): synthesis, characterization, and physical properties,” Macromolecules, vol. 38, no. 17, pp. 7358–7370, 2005. View at Publisher · View at Google Scholar · View at Scopus
  143. D. E. Discher, P. Janmey, and Y.-L. Wang, “Tissue cells feel and respond to the stiffness of their substrate,” Science, vol. 310, no. 5751, pp. 1139–1143, 2005. View at Publisher · View at Google Scholar · View at Scopus
  144. P. C. Georges and P. A. Janmey, “Cell type-specific response to growth on soft materials,” Journal of Applied Physiology, vol. 98, no. 4, pp. 1547–1553, 2005. View at Publisher · View at Google Scholar · View at Scopus
  145. I. Levental, P. C. Georges, and P. A. Janmey, “Soft biological materials and their impact on cell function,” Soft Matter, vol. 3, no. 3, pp. 299–306, 2007. View at Publisher · View at Google Scholar · View at Scopus
  146. L. L. Norman, K. Stroka, and H. Aranda-Espinoza, “Guiding axons in the central nervous system: a tissue engineering approach,” Tissue Engineering Part B, vol. 15, no. 3, pp. 291–305, 2009. View at Publisher · View at Google Scholar · View at Scopus
  147. S. Nemir and J. L. West, “Synthetic materials in the study of cell response to substrate rigidity,” Annals of Biomedical Engineering, vol. 38, no. 1, pp. 2–20, 2009. View at Publisher · View at Google Scholar · View at Scopus
  148. L. A. Flanagan, Y.-E. Ju, B. Marg, M. Osterfield, and P. A. Janmey, “Neurite branching on deformable substrates,” NeuroReport, vol. 13, no. 18, pp. 2411–2415, 2002. View at Publisher · View at Google Scholar · View at Scopus
  149. P. C. Georges, W. J. Miller, D. F. Meaney, E. S. Sawyer, and P. A. Janmey, “Matrices with compliance comparable to that of brain tissue select neuronal over glial growth in mixed cortical cultures,” Biophysical Journal, vol. 90, no. 8, pp. 3012–3018, 2006. View at Publisher · View at Google Scholar · View at Scopus
  150. A. Kostic, J. Sap, and M. P. Sheetz, “RPTPα is required for rigidity-dependent inhibition of extension and differentiation of hippocampal neurons,” Journal of Cell Science, vol. 120, no. 21, pp. 3895–3904, 2007. View at Publisher · View at Google Scholar · View at Scopus
  151. R. J. Strassman, P. C. Letourneau, and N. K. Wessells, “Elongation of axons in an agar matrix that does not support cell locomotion,” Experimental Cell Research, vol. 81, no. 2, pp. 482–487, 1973. View at Scopus