About this Journal Submit a Manuscript Table of Contents
International Journal of Polymer Science
Volume 2010 (2010), Article ID 175264, 12 pages
http://dx.doi.org/10.1155/2010/175264
Research Article

In Situ Swelling Behavior of Chitosan-Polygalacturonic Acid/Hydroxyapatite Nanocomposites in Cell Culture Media

Department of Civil Engineering, North Dakota State University, Fargo, ND 58105, USA

Received 12 February 2010; Revised 22 March 2010; Accepted 22 March 2010

Academic Editor: Shanfeng Wang

Copyright © 2010 Rohit Khanna et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Miyazaki, K. Ishii, and T. Nadai, “The use of chitin and chitosan as drug carriers,” Chemical & Pharmaceutical Bulletin, vol. 29, no. 10, pp. 3067–3069, 1981. View at Scopus
  2. K. Aiedeh, E. Gianasi, I. Orienti, and V. Zecchi, “Chitosan microcapsules as controlled release systems for insulin,” Journal of Microencapsulation, vol. 14, no. 5, pp. 567–576, 1997. View at Scopus
  3. G. Kratz, C. Arnander, J. Swedenborg, et al., “Heparin-chitosan complexes stimulate wound healing in human skin,” Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery, vol. 31, no. 2, pp. 119–123, 1997. View at Scopus
  4. S. V. Madihally and H. W. T. Matthew, “Porous chitosan scaffolds for tissue engineering,” Biomaterials, vol. 20, no. 12, pp. 1133–1142, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. W.-C. Hsieh, C.-P. Chang, and S.-M. Lin, “Morphology and characterization of 3D micro-porous structured chitosan scaffolds for tissue engineering,” Colloids and Surfaces B, vol. 57, no. 2, pp. 250–255, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. Y. Wan, H. Wu, and D. Wen, “Porous-conductive chitosan scaffolds for tissue engineering, 1: preparation and characterization,” Macromolecular Bioscience, vol. 4, no. 9, pp. 882–890, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. J. Nakamatsu, F. G. Torres, O. P. Troncoso, M. L. Yuan, and A. R. Boccaccini, “Processing and characterization of porous structures from chitosan and starch for tissue engineering scaffolds,” Biomacromolecules, vol. 7, no. 12, pp. 3345–3355, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. A. Wang, Q. Ao, W. Cao, et al., “Porous chitosan tubular scaffolds with knitted outer wall and controllable inner structure for nerve tissue engineering,” Journal of Biomedical Materials Research Part A, vol. 79, no. 1, pp. 36–46, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. L. Peng, X. R. Cheng, J. W. Wang, D. X. Xu, and G. Wang, “Preparation and evaluation of porous chitosan/collagen scaffolds for periodontal tissue engineering,” Journal of Bioactive and Compatible Polymers, vol. 21, no. 3, pp. 207–220, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Wan, A. X. Yu, H. Wu, Z. X. Wang, and D. J. Wen, “Porous-conductive chitosan scaffolds for tissue engineering II. In vitro and in vivo degradation,” Journal of Materials Science: Materials in Medicine, vol. 16, no. 11, pp. 1017–1028, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. H. F. Liu, F. L. Yao, Y. Zhou, et al., “Porous poly (DL-lactic acid) modified chitosan-gelatin scaffolds for tissue engineering,” Journal of Biomaterials Applications, vol. 19, no. 4, pp. 303–322, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. L. Ma, C. Y. Gao, Z. W. Mao, et al., “Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering,” Biomaterials, vol. 24, no. 26, pp. 4833–4841, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Yang, T. W. Chung, M. Nagaoka, M. Goto, C.-S. Cho, and T. Akaike, “Hepatocyte-specific porous polymer-scaffolds of alginate/galactosylated chitosan sponge for liver-tissue engineering,” Biotechnology Letters, vol. 23, no. 17, pp. 1385–1389, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Khor and L. Y. Lim, “Implantable applications of chitin and chitosan,” Biomaterials, vol. 24, no. 13, pp. 2339–2349, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Dumitriu and E. Chornet, “Inclusion and release of proteins from polysaccharide-based polyion complexes,” Advanced Drug Delivery Reviews, vol. 31, no. 3, pp. 223–246, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Peniche and W. Arguelles-Monal, “Chitosan based polyelectrolyte complexes,” Macromolecular Symposia, vol. 168, pp. 103–116, 2001.
  17. W. G. T. Willats, P. Knox, and J. D. Mikkelsen, “Pectin: new insights into an old polymer are starting to gel,” Trends in Food Science & Technology, vol. 17, no. 3, pp. 97–104, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Bernabé, C. Peniche, and W. Argüelles-Monal, “Swelling behavior of chitosan/pectin polyelectrolyte complex membranes. Effect of thermal cross-linking,” Polymer Bulletin, vol. 55, no. 5, pp. 367–375, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. L. S. Liu, M. L. Fishman, J. Kost, and K. B. Hicks, “Pectin-based systems for colon-specific drug delivery via oral route,” Biomaterials, vol. 24, no. 19, pp. 3333–3343, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. F. Zhao, W. L. Grayson, T. Ma, B. Bunnell, and W. W. Lu, “Effects of hydroxyapatite in 3-D chitosan-gelatin polymer network on human mesenchymal stem cell construct development,” Biomaterials, vol. 27, no. 9, pp. 1859–1867, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. B. Q. Li, Q. L. Hu, X. Z. Qian, Z. P. Fang, and J. C. Shen, “Bioabsorbable chitosan/hydroxyapatite composite rod prepared by in-situ precipitation for internal fixation of bone fracture,” Acta Polymerica Sinica, no. 6, pp. 828–833, 2002. View at Scopus
  22. W. Y. Xia, W. Liu, L. Cui, et al., “Tissue engineering of cartilage with the use of chitosan-gelatin complex scaffolds,” Journal of Biomedical Materials Research Part B, vol. 71, no. 2, pp. 373–380, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. V. Chiono, E. Pulieri, G. Vozzi, G. Ciardelli, A. Ahluwalia, and P. Giusti, “Genipin-crosslinked chitosan/gelatin blends for biomedical applications,” Journal of Materials Science: Materials in Medicine, vol. 19, no. 2, pp. 889–898, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. Z. S. Li, H. R. Ramay, K. D. Hauch, D. M. Xiao, and M. Q. Zhang, “Chitosan-alginate hybrid scaffolds for bone tissue engineering,” Biomaterials, vol. 26, no. 18, pp. 3919–3928, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. D. Verma, K. S. Katti, D. R. Katti, and B. Mohanty, “Mechanical response and multilevel structure of biomimetic hydroxyapatite/polygalacturonic/chitosan nanocomposites,” Materials Science and Engineering C, vol. 28, no. 3, pp. 399–405, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. D. Verma, K. S. Katti, and D. R. Katti, “Effect of biopolymers on structure of hydroxyapatite and interfacial interactions in biomimetically synthesized hydroxyapatite/biopolymer nanocomposites,” Annals of Biomedical Engineering, vol. 36, no. 6, pp. 1024–1032, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. D. Verma, K. S. Katti, and D. R. Katti, “Osteoblast adhesion, proliferation and growth on polyelectrolyte-complex-hydroxyapatite nanocomposites,” Philosophical Transactions. Series A, vol. 368, no. 1917, pp. 2083–2097, 2010.
  28. M.-W. Lee, C.-L. Hung, J.-C. Cheng, and Y.-J. Wang, “A new anti-adhesion film synthesized from polygalacturonic acid with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide crosslinker,” Biomaterials, vol. 26, no. 18, pp. 3793–3799, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. W. Argüelles-Monal, O. L. Hechavarría, L. Rodríguez, and C. Peniche, “Swelling of membranes from the polyelectrolyte complex between chitosan and carboxymethyl cellulose,” Polymer Bulletin, vol. 31, no. 4, pp. 471–478, 1993. View at Publisher · View at Google Scholar · View at Scopus
  30. S. M. Lim, D. K. Song, S. H. Oh, D. S. Lee-Yoon, E. H. Bae, and J. H. Lee, “In vitro and in vivo degradation behavior of acetylated chitosan porous beads,” Journal of Biomaterials Science, Polymer Edition, vol. 19, no. 4, pp. 453–466, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. W. Tachaboonyakiat, T. Serizawa, and M. Akashi, “Inorganic-organic polymer hybrid scaffold for tissue engineering—II: partial enzymatic degradation of hydroxyapatite-chitosan hybrid,” Journal of Biomaterials Science, Polymer Edition, vol. 13, no. 9, pp. 1021–1032, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Tomihata and Y. Ikada, “In vitro and in vivo degradation of films of chitin and its deacetylated derivatives,” Biomaterials, vol. 18, no. 7, pp. 567–575, 1997. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Hirano, H. Tsuchida, and N. Nagao, “N-acetylation in chitosan and the rate of its enzymic hydrolysis,” Biomaterials, vol. 10, no. 8, pp. 574–576, 1989. View at Scopus
  34. W. L. Cao, M. Y. Cheng, Q. Ao, Y. D. Gong, N. M. Zhao, and X. F. Zhang, “Physical, mechanical and degradation properties, and schwann cell affinity of cross-linked chitosan films,” Journal of Biomaterials Science, Polymer Edition, vol. 16, no. 6, pp. 791–807, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. D. W. Ren, H. F. Yi, W. Wang, and X. J. Ma, “The enzymatic degradation and swelling properties of chitosan matrices with different degrees of N-acetylation,” Carbohydrate Research, vol. 340, no. 15, pp. 2403–2410, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. A. Cárdenas, W. Argüelles-Monal, F. M. Goycoolea, I. Higuera-Ciapara, and C. Peniche, “Diffusion through membranes of the polyelectrolyte complex of chitosan and alginate,” Macromolecular Bioscience, vol. 3, no. 10, pp. 535–539, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. J. R. R. de Souza, J. I. X. de Carvalho, M. T. S. Trevisan, R. C. M. de Paula, N. Ricardo, and J. P. A. Feitosa, “Chitosan-coated pectin beads: characterization and in vitro release of mangiferin,” Food Hydrocolloids, vol. 23, no. 8, pp. 2278–2286, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. K. D. Yao, H. L. Tu, F. Cheng, J. W. Zhang, and J. Liu, “pH-sensitivity of the swelling of a chitosan-pectin polyelectrolyte complex,” Angewandte Makromolekulare Chemie, vol. 245, pp. 63–72, 1997. View at Scopus
  39. G. Balooch, G. W. Marshall, S. J. Marshall, O. L. Warren, S. A. S. Asif, and M. Balooch, “Evaluation of a new modulus mapping technique to investigate microstructural features of human teeth,” Journal of Biomechanics, vol. 37, no. 8, pp. 1223–1232, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. R. Khanna, K. S. Katti, and D. R. Katti, “Nanomechanics of surface modified nanohydroxyapatite particulates used in biomaterials,” Journal of Engineering Mechanics, vol. 135, no. 5, pp. 468–478, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. K. S. Katti, P. Turlapati, D. Verma, R. Bhowmik, P. K. Gujjula, and D. R. Katti, “Static and dynamic mechanical behavior of hydroxyapatite-polyacrylic acid composites under simulated body fluid,” American Journal of Biochemistry and Biotechnology, vol. 2, no. 2, pp. 73–79, 2006.
  42. S. A. S. Asif, K. J. Wahl, R. J. Colton, and O. L. Warren, “Quantitative imaging of nanoscale mechanical properties using hybrid nanoindentation and force modulation,” Journal of Applied Physics, vol. 90, no. 3, pp. 1192–1200, 2001. View at Publisher · View at Google Scholar · View at Scopus
  43. K. Kato, Y. Eika, and Y. Ikada, “In situ hydroxyapatite crystallization for the formation of hydroxyapatite/polymer composites,” Journal of Materials Science, vol. 32, no. 20, pp. 5533–5543, 1997. View at Scopus
  44. F. Bigucci, B. Luppi, T. Cerchiara, et al., “Chitosan/pectin polyelectrolyte complexes: selection of suitable preparative conditions for colon-specific delivery of vancomycin,” European Journal of Pharmaceutical Sciences, vol. 35, no. 5, pp. 435–441, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. D. Verma, K. Katti, and D. Katti, “Experimental investigation of interfaces in hydroxyapatite/polyacrylic acid/polycaprolactone composites using photoacoustic FTIR spectroscopy,” Journal of Biomedical Materials Research Part A, vol. 77, no. 1, pp. 59–66, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. W. W. Thein-Han and R. D. K. Misra, “Biomimetic chitosan-nanohydroxyapatite composite scaffolds for bone tissue engineering,” Acta Biomaterialia, vol. 5, no. 4, pp. 1182–1197, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. H. P. Wampler and A. Ivanisevic, “Nanoindentation of gold nanoparticles functionalized with proteins,” Micron, vol. 40, no. 4, pp. 444–448, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. J.-Y. Rho and G. M. Pharr, “Effects of drying on the mechanical properties of bovine femur measured by nanoindentation,” Journal of Materials Science: Materials in Medicine, vol. 10, no. 8, pp. 485–488, 1999. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Hengsberger, A. Kulik, and Ph. Zysset, “Nanoindentation discriminates the elastic properties of individual human bone lamellae under dry and physiological conditions,” Bone, vol. 30, no. 1, pp. 178–184, 2002. View at Publisher · View at Google Scholar · View at Scopus