About this Journal Submit a Manuscript Table of Contents
International Journal of Polymer Science
Volume 2011 (2011), Article ID 161749, 20 pages
http://dx.doi.org/10.1155/2011/161749
Review Article

Poly(amidoamine) Hydrogels as Scaffolds for Cell Culturing and Conduits for Peripheral Nerve Regeneration

Department of Industrial and Organic Chemistry, The University of Milan, Via Venezian 21, 20133 Milan, Italy

Received 6 June 2011; Revised 27 July 2011; Accepted 27 July 2011

Academic Editor: Shanfeng Wang

Copyright © 2011 Fabio Fenili et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. J. Shieh and J. P. Vacanti, “State-of-the-art tissue engineering: from tissue engineering to organ building,” Surgery, vol. 137, no. 1, pp. 1–7, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. Italian Ministry of Health, National Center for Transplant, 2009-2010.
  3. R. Langer and J. P. Vacanti, “Tissue engineering,” Science, vol. 260, no. 5110, pp. 920–926, 1993. View at Scopus
  4. J. P. Vacanti and R. Langer, “Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation,” The Lancet, vol. 354, no. 1, pp. 32–34, 1999. View at Scopus
  5. R. S. Langer and J. P. Vacanti, “Tissue engineering: the challenges ahead,” Scientific American, vol. 280, no. 4, pp. 86–89, 1999. View at Scopus
  6. R. Langer and J. P. Vacanti, “Artificial organs,” Scientific American, vol. 273, no. 3, pp. 130–133, 1995. View at Scopus
  7. S. Yang, K. F. Leong, Z. Du, and C. K. Chua, “The design of scaffolds for use in tissue engineering. Part I. Traditional factors,” Tissue Engineering, vol. 7, no. 6, pp. 679–689, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. M. H. Spilker, K. Asano, I. V. Yannas, and M. Spector, “Contraction of collagen-glycosaminoglycan matrices by peripheral nerve cells in vitro,” Biomaterials, vol. 22, no. 10, pp. 1085–1093, 2001. View at Publisher · View at Google Scholar
  9. J. D. Guest, A. Rao, L. Olson, M. B. Bunge, and R. P. Bunge, “The ability of human schwann cell grafts to promote regeneration in the transected nude rat spinal cord,” Experimental Neurology, vol. 148, no. 2, pp. 502–522, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. W. J. C. M. Marijnissen, G. J. V. M. Van Osch, J. Aigner et al., “Alginate as a chondrocyte-delivery substance in combination with a non-woven scaffold for cartilage tissue engineering,” Biomaterials, vol. 23, no. 6, pp. 1511–1517, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Pomahač, T. Svensjö, F. Yao, H. Brown, and E. Eriksson, “Tissue engineering of skin,” Critical Reviews in Oral Biology and Medicine, vol. 9, no. 3, pp. 333–334, 1998. View at Scopus
  12. S. Liu, P. Peulve, O. Jin et al., “Axonal regrowth through collagen tubes bridging the spinal cord to nerve roots,” Journal of Neuroscience Research, vol. 49, no. 4, pp. 425–432, 1997. View at Publisher · View at Google Scholar · View at Scopus
  13. X. M. Xu, S. X. Zhang, H. Li, P. Aebischer, and M. Bunge, “Regrowth of axons into the distal spinal cord through a Schwann-cell-seeded mini-channel implanted into hemisected adult rat spinal cord,” European Journal of Neuroscience, vol. 11, no. 5, pp. 1723–1740, 1999. View at Publisher · View at Google Scholar
  14. A. L. Sieminski, R. F. Padera, T. Blunk, and K. J. Gooch, “Systemic delivery of human growth hormone using genetically modified tissue-engineered microvascular networks: prolonged delivery and endothelial survival with inclusion of nonendothelial cells,” Tissue Engineering, vol. 8, no. 6, pp. 1057–1069, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. A. Dar, M. Shachar, J. Leor, and S. Cohen, “Optimization of cardiac cell seeding and distribution in 3D porous alginate scaffolds,” Biotechnology and Bioengineering, vol. 80, no. 3, pp. 305–312, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. N. Nicoli Aldini, M. Fini, M. Rocca, G. Giavaresi, and R. Giardino, “Guided regeneration with resorbable conduits in experimental peripheral nerve injuries,” International Orthopaedics, vol. 24, no. 3, pp. 121–125, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. L. Jae, J. W. Lee, and C. E. Schmidt, “Neuroactive conducting scaffolds: nerve growth factor conjugation on active ester-functionalized polypyrrole,” Journal of the Royal Society Interface, vol. 6, no. 38, pp. 801–810, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. R. A. Dubin, G. C. Callegari, J. Kohn, and A. V. Neimark, “Carbon nanotube fibers are compatible with mammalian cells and neurons,” IEEE Transactions on Nanobioscience, vol. 7, no. 1, pp. 11–14, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. E. B. Malarkey and V. Parpura, “Applications of carbon nanotubes in neurobiology,” Neurodegenerative Diseases, vol. 4, no. 4, pp. 292–299, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. G. Cellot, E. Cilia, S. Cipollone et al., “Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts,” Nature Nanotechnology, vol. 4, no. 2, pp. 126–133, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. W. J. Li and R. S. Tuan, “Polymeric scaffolds for cartilage tissue engineering,” Macromolecular Symposia, vol. 227, pp. 65–75, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. W. T. Godbey, “Polymeric scaffolds for stem cell growth,” Australian Journal of Chemistry, vol. 58, no. 10, pp. 689–690, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Alexander and K. M. Shakesheff, “Responsive polymers at the biology/materials science interface,” Advanced Materials, vol. 18, no. 24, pp. 3321–3328, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Y. Lee and D. J. Mooney, “Hydrogels for tissue engineering,” Chemical Reviews, vol. 101, no. 7, pp. 1869–1879, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Ferruti, “Ion-chelating polymers (Medical Applications),” in Polymeric Materials Encyclopedia, J. C. Salamone, Ed., pp. 3334–3359, CRC Press, Boca Raton, Fla, USA, 1996.
  26. P. Ferruti, M. A. Marchisio, and R. Duncan, “Poly(amido-amine)s: biomedical applications,” Macromolecular Rapid Communications, vol. 23, no. 5-6, pp. 332–355, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Casali, S. Riva, and P. Ferruti, “Use of new aminosugar derivatives as comonomers for the synthesis of glycosylated poly(amido-amines),” Journal of Bioactive and Compatible Polymers, vol. 16, no. 6, pp. 479–491, 2001. View at Scopus
  28. E. Ranucci, F. Bignotti, P. L. Paderno, and P. Ferruti, “Modification of albumins by grafting poly(amido amine) chains,” Polymer, vol. 36, no. 15, pp. 2989–2994, 1995. View at Scopus
  29. P. Ferruti, M. E. Ranucci, L. Sartore et al., “Recent results on functional polymers and macromonomers of interest as biomaterials or for biomaterial modification,” Biomaterials, vol. 15, no. 15, pp. 1235–1241, 1994. View at Publisher · View at Google Scholar · View at Scopus
  30. N. Lavignac, M. Lazenby, P. Foka et al., “Synthesis and endosomolytic properties of poly(amidoamine) block copolymers,” Macromolecular Bioscience, vol. 4, no. 10, pp. 922–929, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. E. Ranucci, P. Ferruti, E. Lattanzio et al., “Acid-base properties of Poly(amidoamine)s,” Journal of Polymer Science, Part A, vol. 47, no. 24, pp. 6977–6991, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Richardson, P. Ferruti, and R. Duncan, “Poly(amidoamine)s as potential endosomolytic polymers: evaluation in vitro and body distribution in normal and tumour-bearing animals,” Journal of Drug Targeting, vol. 6, no. 6, pp. 391–404, 1999. View at Scopus
  33. P. Ferruti, S. Bianchi, E. Ranucci, F. Chiellini, and V. Caruso, “Novel poly(amido-amine)-based hydrogels as scaffolds for tissue engineering,” Macromolecular Bioscience, vol. 5, no. 7, pp. 613–622, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. B. Malgesini, I. Verpilio, R. Duncan, and P. Ferruti, “Poly(amido-amine)s carrying primary amino groups as side substituents,” Macromolecular Bioscience, vol. 3, no. 1, pp. 59–66, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Ferruti, E. Ranucci, S. Bianchi, L. Falciola, P. R. Mussini, and M. Rossi, “Novel polyamidoamine-based hydrogel with an innovative molecular architecture as a Co2+-, Ni2+, and Cu2+ sorbing material: cyclovoltammetry and extended X-ray absorption fine structure studies,” Journal of Polymer Science, Part A, vol. 44, no. 7, pp. 2316–2327, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. S. P. Massia and J. A. Hubbell, “An RGD spacing of 440 nm is sufficient for integrin α(v)β3-mediated fibroblast spreading and 140 nm for focal contact and stress fiber formation,” The Journal of Cell Biology, vol. 114, no. 5, pp. 1089–1100, 1991. View at Scopus
  37. K. Tanahashi, S. Jo, and A. G. Mikos, “Synthesis and characterization of biodegradable cationic poly(propylene fumarate-co-ethylene glycol) copolymer hydrogels modified with agmatine for enhanced cell adhesion,” Biomacromolecules, vol. 3, no. 5, pp. 1030–1037, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. W. Raasch, U. Schäfer, J. Chun, and P. Dominiak, “Biological significance of agmatine, an endogenous ligand at imidazoline binding sites,” British Journal of Pharmacology, vol. 133, no. 6, pp. 755–780, 2001. View at Scopus
  39. J. Franchini, E. Ranucci, P. Ferruti, M. Rossi, and R. Cavalli, “Synthesis, physicochemical properties, and preliminary biological characterizations of a novel amphoteric agmatine-based poly(amidoamine) with RGD-like repeating units,” Biomacromolecules, vol. 7, no. 4, pp. 1215–1222, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. P. Ferruti, J. Franchini, M. Bencini et al., “Prevailingly cationic agmatine-based amphoteric polyamidoamine as a nontoxic, nonhemolytic, and "stealthlike" DNA complexing agent and transfection promoter,” Biomacromolecules, vol. 8, no. 5, pp. 1498–1504, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. R. Annunziata, J. Franchini, E. Ranucci, and P. Ferruti, “Structural characterisation of poly(amidoamine) networks via high-resolution magic angle spinning NMR,” Magnetic Resonance in Chemistry, vol. 45, no. 1, pp. 51–58, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. P. Ferruti, S. Bianchi, E. Ranucci, F. Chiellini, and A. M. Piras, “Novel agmatine-containing poly(amidoamine) hydrogels as scaffolds for tissue engineering,” Biomacromolecules, vol. 6, no. 4, pp. 2229–2235, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. F. Bignotti, P. Sozzani, E. Ranucci, and P. Ferruti, “NMR studies, molecular characterization, and degradation behavior of poly(amido amine)s. 1. Poly(amido amine) deriving from the polyaddition of 2-methylpiperazine to 1,4-bis(acryloyl)piperazine,” Macromolecules, vol. 27, no. 24, pp. 7171–7178, 1994. View at Scopus
  44. E. Ranucci, G. Spagnoli, P. Ferruti, D. Sgouras, and R. Duncan, “Poly(amidoamine)s with potential as drug carriers: degradation and cellular toxicity,” Journal of Biomaterials Science, vol. 2, no. 4, pp. 303–315, 1991. View at Scopus
  45. J. C. Adams, “Cell-matrix contact structures,” Cellular and Molecular Life Sciences, vol. 58, no. 3, pp. 371–392, 2001. View at Scopus
  46. J. El-Ali, P. K. Sorger, and K. F. Jensen, “Cells on chips,” Nature, vol. 442, no. 7101, pp. 403–411, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. N. Scharnagl, S. Lee, B. Hiebl, A. Sisson, and A. Lendlein, “Design principles for polymers as substratum for adherent cells,” Journal of Materials Chemistry, vol. 20, no. 40, pp. 8789–8802, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. M. P. Lutolf and J. A. Hubbell, “Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering,” Nature Biotechnology, vol. 23, no. 1, pp. 47–55, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. P. Krsko and M. Libera, “Biointeractive hydrogels,” Materials Today, vol. 8, no. 12, pp. 36–44, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. V. L. Tsang, A. A. Chen, L. M. Cho et al., “Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels,” The FASEB Journal, vol. 21, no. 3, pp. 790–801, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. S. Nayak and L. Andrew Lyon, “Soft nanotechnology with soft nanoparticles,” Angewandte Chemie—International Edition, vol. 44, no. 47, pp. 7686–7708, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. M. R. Hynd, J. P. Frampton, N. Dowell-Mesfin, J. N. Turner, and W. Shain, “Directed cell growth on protein-functionalized hydrogel surfaces,” Journal of Neuroscience Methods, vol. 162, no. 1-2, pp. 255–263, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. F. Toyoshima and E. Nishida, “Integrin-mediated adhesion orients the spindle parallel to the substratum in an EB1- and myosin X-dependent manner,” The EMBO Journal, vol. 26, no. 6, pp. 1487–1498, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. E. Ruoslahti, “RGD and other recognition sequences for integrins,” Annual Review of Cell and Developmental Biology, vol. 12, pp. 697–715, 1996. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. U. Hersel, C. Dahmen, and H. Kessler, “RGD modified polymers: biomaterials for stimulated cell adhesion and beyond,” Biomaterials, vol. 24, no. 24, pp. 4385–4415, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. T. G. Kim and T. G. Park, “Biomimicking extracellular matrix: cell adhesive RGD peptide modified electrospun poly(D,L-lactic-co-glycolic acid) nanofiber mesh,” Tissue Engineering, vol. 12, no. 2, pp. 221–233, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. P. M. D. Watson, M. J. Humphries, J. Relton, N. J. Rothwell, A. Verkhratsky, and R. M. Gibson, “Integrin-binding RGD peptides induce rapid intracellular calcium increases and MAPK signaling in cortical neurons,” Molecular and Cellular Neuroscience, vol. 34, no. 2, pp. 147–154, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. S. Kostidis, A. Stavrakoudis, N. Biris, D. Tsoukatos, C. Sakarellos, and V. Tsikaris, “The relative orientation of the Arg and Asp side chains defined by a pseudodihedral angle as a key criterion for evaluating the structure-activity relationship of RGD peptides,” Journal of Peptide Science, vol. 10, no. 8, pp. 494–509, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. E. Puklin-Faucher, M. Gao, K. Schulten, and V. Vogel, “How the headpiece hinge angle is opened: new insights into the dynamics of integrin activation,” The Journal of Cell Biology, vol. 175, no. 2, pp. 349–360, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. W. A. Comisar, S. X. Hsiong, H. J. Kong, D. J. Mooney, and J. J. Linderman, “Multi-scale modeling to predict ligand presentation within RGD nanopatterned hydrogels,” Biomaterials, vol. 27, no. 10, pp. 2322–2329, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. A. Bodin, L. Ahrenstedt, H. Fink, H. Brumer, B. Risberg, and P. Gatenholm, “Modification of nanocellulose with a xyloglucan-RGD conjugate enhances adhesion and proliferation of endothelial cells: implications for tissue engineering,” Biomacromolecules, vol. 8, no. 12, pp. 3697–3704, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. E. Jacchetti, E. Emilitri, S. Rodighiero et al., “Biomimetic poly(amidoamine) hydrogels as synthetic materials for cell culture,” Journal of Nanobiotechnology, vol. 6, article 14, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  63. G. Dos Reis, F. Fenili, A. Gianfelice et al., “Direct microfabrication of topographical and chemical cues for the guided growth of neural cell networks on polyamidoamine hydrogels,” Macromolecular Bioscience, vol. 10, no. 8, pp. 842–852, 2010. View at Publisher · View at Google Scholar · View at PubMed
  64. V. Magnaghi, V. Conte, P. Procacci et al., “Biological performance of a novel biodegradable polyamidoamine hydrogel as guide for peripheral nerve regeneration,” Journal of Biomedical Materials Research Part A, vol. 98, no. 1, pp. 19–30, 2011. View at Publisher · View at Google Scholar · View at PubMed
  65. E. Emilitri, F. Guizzardi, C. Lenardi, M. Suardi, E. Ranucci, and P. Ferruti, “Novel poly(amidoamine)-based hydrogels as scaffolds for tissue engineering,” Macromolecular Symposia, vol. 266, no. 1, pp. 41–47, 2008. View at Publisher · View at Google Scholar
  66. G. Maheshwari, G. Brown, D. A. Lauffenburger, A. Wells, and L. G. Griffith, “Cell adhesion and motility depend on nanoscale RGD clustering,” Journal of Cell Science, vol. 113, no. 10, pp. 1677–1686, 2000.
  67. E. A. Cavalcanti-Adam, T. Volberg, A. Micoulet, H. Kessler, B. Geiger, and J. P. Spatz, “Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands,” Biophysical Journal, vol. 92, no. 8, pp. 2964–2974, 2007. View at Publisher · View at Google Scholar · View at PubMed
  68. J. C. Adams, “Roles of fascin in cell adhesion and motility,” Current Opinion in Cell Biology, vol. 16, no. 5, pp. 590–596, 2004. View at Publisher · View at Google Scholar · View at PubMed
  69. J. Melin and S. R. Quake, “Microfluidic large-scale integration: the evolution of design rules for biological automation,” Annual Review of Biophysics and Biomolecular Structure, vol. 36, pp. 213–231, 2007. View at Publisher · View at Google Scholar · View at PubMed
  70. N. M. Elman, B. C. Masi, M. J. Cima, and R. Langer, “Electro-thermally induced structural failure actuator (ETISFA) for implantable controlled drug delivery devices based on Micro-Electro-Mechanical- Systems,” Lab on a Chip, vol. 10, no. 20, pp. 2796–2804, 2010. View at Publisher · View at Google Scholar · View at PubMed
  71. Y. Mei, K. Saha, S. R. Bogatyrev et al., “Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells,” Nature Materials, vol. 9, no. 9, pp. 768–778, 2010. View at Publisher · View at Google Scholar · View at PubMed
  72. L. M. Y. Yu, N. D. Leipzig, and M. S. Shoichet, “Promoting neuron adhesion and growth,” Materials Today, vol. 11, no. 5, pp. 36–43, 2008. View at Publisher · View at Google Scholar
  73. L. R. Robinson, “Traumatic injury to peripheral nerves,” Muscle and Nerve, vol. 23, no. 6, pp. 863–873, 2000. View at Publisher · View at Google Scholar
  74. S. K. Lee and S. W. Wolfe, “Peripheral nerve injury and repair,” The Journal of the American Academy of Orthopaedic Surgeons, vol. 8, no. 4, pp. 243–252, 2000.
  75. P. Aebischer, V. Guenard, S. R. Winn, R. F. Valentini, and P. M. Galletti, “Blind-ended semipermeable guidance channels support peripheral nerve regeneration in the absence of a distal nerve stump,” Brain Research, vol. 454, no. 1-2, pp. 179–187, 1988.
  76. L. R. Williams and S. Varon, “Modification of fibrin matrix formation in situ enhances nerve regeneration in silicone chambers,” The Journal of Comparative Neurology, vol. 231, no. 2, pp. 209–220, 1985.
  77. L. R. Williams, N. Danielsen, H. Muller, and S. Varon, “Exogenous matrix percursors promote functional nerve regneration across a 15-mm gap within a silicone chamber in the rat,” The Journal of Comparative Neurology, vol. 264, no. 2, pp. 284–290, 1987.
  78. A. D. Ansselin, T. Fink, and D. F. Davey, “Collagen—chitosan nerve guides for peripheral nerve repair: a histomorphometric study,” Neuropathology and Applied Neurobiology, vol. 23, pp. 387–398, 1997.
  79. M. Koshimune, K. Takamatsu, H. Nakatsuka, K. Inui, Y. Yamano, and Y. Ikada, “Creating bioabsorbable Schwann cell coated conduits through tissue engineering,” Bio-Medical Materials and Engineering, vol. 13, no. 3, pp. 223–229, 2003.
  80. S. Atzet, S. Curtin, P. Trinh, S. Bryant, and B. Ratner, “Degradable poly(2-hydroxyethyl methacrylate)-co-polycaprolactone hydrogels for tissue engineering scaffolds,” Biomacromolecules, vol. 9, no. 12, pp. 3370–3377, 2008. View at Publisher · View at Google Scholar · View at PubMed
  81. R. Midha, C. A. Munro, P. D. Dalton, C. H. Tator, and M. S. Shoichet, “Growth factor enhancement of peripheral nerve regeneration through a novel synthetic hydrogel tube,” Journal of Neurosurgery, vol. 99, no. 3, pp. 555–565, 2003.
  82. P. Weiss, “Reunion of stumps of small nerves by tubulation instead of suture,” Science, vol. 93, no. 2403, pp. 67–68, 1941.
  83. M. Foidart-Dessalle, A. Dubuisson, A. Lejeune et al., “Sciatic nerve regeneration through venous or nervous grafts in the rat,” Experimental Neurology, vol. 148, no. 1, pp. 236–246, 1997.
  84. C. Y. Tseng, G. Hu, R. T. Ambron, and D. T. W. Chiu, “Histologic analysis of Schwann cell migration and peripheral nerve regeneration in the autogenous venous nerve conduit (AVNC),” Journal of Reconstructive Microsurgery, vol. 19, no. 5, pp. 331–339, 2003. View at Publisher · View at Google Scholar · View at PubMed
  85. Y. T. Kim, V. K. Haftel, S. Kumar, and R. V. Bellamkonda, “The role of aligned polymer fiber-based constructs in the bridging of long peripheral nerve gaps,” Biomaterials, vol. 29, no. 21, pp. 3117–3127, 2008. View at Publisher · View at Google Scholar · View at PubMed
  86. J. S. Belkas, C. A. Munro, M. S. Shoichet, and R. Midha, “Peripheral nerve regeneration through a synthetic hydrogel nerve tube,” Restorative Neurology and Neuroscience, vol. 23, no. 1, pp. 19–29, 2005.
  87. N. N. Aldini, G. Perego, G. D. Cella et al., “Effectiveness of a bioabsorbable conduit in the repair of peripheral nerves,” Biomaterials, vol. 17, no. 10, pp. 959–962, 1996. View at Publisher · View at Google Scholar
  88. G. Lundborg, L. B. Dahlin, and N. Danielsen, “Ulnar nerve repair by the silicone chamber technique. Case report,” Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery, vol. 25, no. 1, pp. 79–82, 1991.
  89. M. Merle, A. L. Dellon, J. N. Campbell, and P. S. Chang, “Complications from silicon-polymer intubulation of nerves,” Microsurgery, vol. 10, no. 2, pp. 130–133, 1989.
  90. G. Lundborg, B. Rosén, L. Dahlin, J. Holmberg, and I. Rosén, “Tubular repair of the median or ulnar nerve in the human forearm: a 5—year follow—up,” Journal of Hand Surgery, vol. 29, no. 2, pp. 100–107, 2004. View at Publisher · View at Google Scholar · View at PubMed
  91. J. Braga-Silva, “The use of silicone tubing in the late repair of the median and ulnar nerves in the forearm,” Journal of Hand Surgery, vol. 24, no. 6, pp. 703–706, 1999. View at Publisher · View at Google Scholar · View at PubMed
  92. J. S. Belkas, M. S. Shoichet, and R. Midha, “Peripheral nerve regeneration through guidance tubes,” Neurological Research, vol. 26, no. 2, pp. 151–160, 2004. View at Publisher · View at Google Scholar · View at PubMed
  93. T. W. Hudson, G. R. D. Evans, and C. E. Schmidt, “Engineering strategies for peripheral nerve repair,” Clinics in Plastic Surgery, vol. 26, no. 4, pp. 617–628, 1999.
  94. V. B. Doolabh, M. C. Hertl, and S. E. Mackinnon, “The role of conduits in nerve repair: a review,” Reviews in the Neurosciences, vol. 7, no. 1, pp. 47–84, 1996.
  95. S. H. Oh, J. H. Kim, K. S. Song et al., “Peripheral nerve regeneration within an asymmetrically porous PLGA/Pluronic F127 nerve guide conduit,” Biomaterials, vol. 29, no. 11, pp. 1601–1609, 2008. View at Publisher · View at Google Scholar · View at PubMed
  96. Z. H. Zhou, X. P. Liu, and L. H. Liu, “Preparation and biocompatibility of poly(L-lactide-co-glycolide) scaffold materials for nerve conduits,” Designed Monomers and Polymers, vol. 11, no. 5, pp. 447–456, 2008. View at Publisher · View at Google Scholar
  97. L. He, Y. Zhang, C. Zeng et al., “Manufacture of plga multiple-channel conduits with precise hierarchical pore architectures and in vitro/vivo evaluation for spinal cord injury,” Tissue Engineering Part C, vol. 15, no. 2, pp. 243–255, 2009. View at Publisher · View at Google Scholar · View at PubMed
  98. S. Ichihara, Y. Inada, A. Nakada et al., “Development of new nerve guide tube for repair of long nerve defects,” Tissue Engineering Part C, vol. 15, no. 3, pp. 387–402, 2009. View at Publisher · View at Google Scholar · View at PubMed
  99. M. Yoshitani, S. Fukuda, S. I. Itoi et al., “Experimental repair of phrenic nerve using a polyglycolic acid and collagen tube,” Journal of Thoracic and Cardiovascular Surgery, vol. 133, no. 3, pp. 726–733, 2007. View at Publisher · View at Google Scholar · View at PubMed
  100. M. C. Lu, Y. T. Huang, J. H. Lin et al., “Evaluation of a multi-layer microbraided polylactic acid fiber-reinforced conduit for peripheral nerve regeneration,” Journal of Materials Science, vol. 20, no. 5, pp. 1175–1180, 2009. View at Publisher · View at Google Scholar · View at PubMed
  101. G. R. D. Evans, K. Brandt, S. Katz et al., “Bioactive poly(L-lactic acid) conduits seeded with Schwann cells for peripheral nerve regeneration,” Biomaterials, vol. 23, no. 3, pp. 841–848, 2002. View at Publisher · View at Google Scholar
  102. G. Soldani, G. Varelli, A. Minnocci, and P. Dario, “Manufacturing and microscopical characterisation of polyurethane nerve guidance channel featuring a highly smooth internal surface,” Biomaterials, vol. 19, no. 21, pp. 1919–1924, 1998.
  103. D. Yin, X. Wang, Y. Yan, and R. Zhang, “Preliminary studies on peripheral nerve regeneration using a new polyurethane conduit,” Journal of Bioactive and Compatible Polymers, vol. 22, no. 2, pp. 143–159, 2007. View at Publisher · View at Google Scholar
  104. T. Cui, Y. Yan, R. Zhang, L. Liu, W. Xu, and X. Wang, “Rapid prototyping of a double-layer polyurethane-collagen conduit for peripheral nerve regeneration,” Tissue Engineering Part C, vol. 15, no. 1, pp. 1–9, 2009. View at Publisher · View at Google Scholar · View at PubMed
  105. R. C. Young, G. Terenghi, and M. Wiberg, “Poly-3-hydroxybutyrate (PHB): a resorbable conduit for long-gap repair in peripheral nerves,” British Journal of Plastic Surgery, vol. 55, no. 3, pp. 235–240, 2002. View at Publisher · View at Google Scholar · View at PubMed
  106. D. F. Kalbermatten, P. J. Kingham, D. Mahay et al., “Fibrin matrix for suspension of regenerative cells in an artificial nerve conduit,” Journal of Plastic, Reconstructive and Aesthetic Surgery, vol. 61, no. 6, pp. 669–675, 2008. View at Publisher · View at Google Scholar · View at PubMed
  107. A. Mosahebi, M. Wiberg, and G. Terenghi, “Addition of fibronectin to alginate matrix improves peripheral nerve regeneration in tissue-engineered conduits,” Tissue Engineering, vol. 9, no. 2, pp. 209–218, 2003. View at Publisher · View at Google Scholar · View at PubMed
  108. E. Gámez, Y. Goto, K. Nagata, T. Iwaki, T. Sasaki, and T. Matsuda, “Photofabricated gelatin-based nerve conduits: nerve tissue regeneration potentials,” Cell Transplantation, vol. 13, no. 5, pp. 549–564, 2004.
  109. P. Prang, R. Müller, A. Eljaouhari et al., “The promotion of oriented axonal regrowth in the injured spinal cord by alginate-based anisotropic capillary hydrogels,” Biomaterials, vol. 27, no. 19, pp. 3560–3569, 2006. View at Publisher · View at Google Scholar · View at PubMed
  110. L. Yao, G. C. W. de Ruiter, H. Wang et al., “Controlling dispersion of axonal regeneration using a multichannel collagen nerve conduit,” Biomaterials, vol. 31, no. 22, pp. 5789–5797, 2010. View at Publisher · View at Google Scholar · View at PubMed
  111. M. B. Runge, M. Dadsetan, J. Baltrusaitis et al., “Development of electrically conductive oligo(polyethylene glycol) fumarate-polypyrrole hydrogels for nerve regeneration,” Biomacromolecules, vol. 11, no. 11, pp. 2845–2853, 2010. View at Publisher · View at Google Scholar · View at PubMed
  112. J. S. Belkas, C. A. Munro, M. S. Shoichet, M. Johnston, and R. Midha, “Long-term in vivo biomechanical properties and biocompatibility of poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) nerve conduits,” Biomaterials, vol. 26, no. 14, pp. 1741–1749, 2005. View at Publisher · View at Google Scholar · View at PubMed
  113. J. W. Gunn, S. D. Turner, and B. K. Mann, “Polymer gel systems for nerve repair and regeneration,” Journal of Biomedical Materials Research Part A, vol. 72, no. 1, pp. 91–97, 2005.