About this Journal Submit a Manuscript Table of Contents
International Journal of Polymer Science
Volume 2011 (2011), Article ID 212047, 8 pages
Research Article

Kenaf Bast Fibers—Part I: Hermetical Alkali Digestion

1Forest Products Department (FPD), Mississippi State University (MSU), Box 9820, Starkville, MS 39762-9601, USA
2Center for Advanced Vehicular Systems (CAVS), Box 5405, Starkville, MS 39762-5405, USA

Received 1 April 2011; Accepted 16 May 2011

Academic Editor: Susheel Kalia

Copyright © 2011 Jinshu Shi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. F. Kaldor, C. Karlgren, and H. Verwest, “Kenaf-a fast growing fiber source for papermaking,” Tappi Journal, vol. 73, no. 11, pp. 205–208, 1990.
  2. K. H. Song and S. K. Obendorf, “Chemical and biological retting of kenaf fibers,” Textile Research Journal, vol. 76, no. 10, pp. 751–756, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. B. Aleksandra, B. G. Gordana, A. Grozdanov, M. Avella, G. Gentile, and M. Errico, “Crystallization behavior of poly(hydroxybytyrate-co-valerate) in model and bulk PHBV/kenaf fiber composites,” Journal of Materials Science, vol. 42, no. 16, pp. 6501–6509, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. T. A. Bullions, D. Hoffman, R. A. Gillespie, J. P. Brien, and A. C. Loos, “Contributions of feather fibers and various cellulose fibers to the mechanical properties of polypropylene matrix composites,” Composites Science and Technology, vol. 66, no. 1, pp. 102–114, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Clemons and A. R. Sanadi, “Instrumented impact testing of kenaf fiber reinforced polypropylene composites: effects of temperature and composition,” Journal of Reinforced Plastics and Composites, vol. 26, no. 15, pp. 1587–1602, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. J. M. Park, T. Q. Son, J. G. Jung, and B. S. Hwang, “Interfacial evaluation of single ramie and kenaf fiber/epoxy resin composites using micromechanical test and nondestructive acoustic emission,” Composite Interfaces, vol. 13, no. 2-3, pp. 105–129, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Nishino, K. Hirao, M. Kotera, K. Nakamae, and H. Inagaki, “Kenaf reinforced biodegradable composite,” Composites Science and Technology, vol. 63, no. 9, pp. 1281–1286, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. S. H. Aziz, M. P. Ansell, S. J. Clarke, and S. R. Panteny, “Modified polyester resins for natural fibre composites,” Composites Science and Technology, vol. 65, no. 3-4, pp. 525–535, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Keshk, W. Suwinarti, and K. Sameshima, “Physicochemical characterization of different treatment sequences on kenaf bast fiber,” Carbohydrate Polymers, vol. 65, no. 2, pp. 202–206, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. H. J. Lee, Y. S. Han, H. J. Yoo, J. H. Kim, K. H. Song, and C. S. Ahn, “Effect of chemical retting on the fiber separation of kenaf bast,” Journal of the Korean Society of Clothing and Textiles, vol. 27, no. 9-10, pp. 1144–1152, 2003.
  11. W. H. Morrison, D. E. Akin, G. Ramaswamy, and B. Baldwin, “Evaluating chemically retted kenaf using chemical, histochemical, and microspectrophotometric analyses,” Textile Research Journal, vol. 66, no. 10, pp. 651–656, 1996. View at Scopus
  12. D. V. Parikh, T. A. Calamari, A. P. S. Sawhney et al., “Improved chemical retting of kenaf fibers,” Textile Research Journal, vol. 72, no. 7, pp. 618–624, 2002. View at Scopus
  13. J. Wang and G. N. Ramaswamy, “Physical and chemical properties of wet processed hemp and kenaf,” AATCC Review, vol. 5, no. 1, pp. 22–26, 2005. View at Scopus
  14. G. N. Ramaswamy, C. G. Ruff, and C. R. Boyd, “Effect of bacterial and chemical retting on kenaf fiber quality,” Textile Research Journal, vol. 64, no. 5, pp. 305–308, 1994. View at Scopus
  15. A. P. Deshpande, M. B. Rao, and C. L. Rao, “Extraction of bamboo fibers and their use as reinforcement in polymeric composites,” Journal of Applied Polymer Science, vol. 76, no. 1, pp. 83–92, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. G. G. Allan, J. P. Carroll, A. R. Negri, M. Raghuraman, P. Ritzenthaler, and A. Yahiaoui, “The microporosity of pulp: the precipitation of inorganic fillers within the micropores of the cell wall,” Tappi Journal, vol. 75, no. 1, pp. 175–178, 1992.
  17. TAPPI T 211 om-93, “Ash in wood, pulp, paper and paperboard: combustion at 525 degrees Celsius,” Tappi Standards, 1993.
  18. The Institute of Paper Chemistry, Method no. 428, The Institute of Paper Chemistry, Appleton, Wis, USA, 1951.
  19. L. E. Wise, M. Murphy, and A. D. Addieco, “Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses,” Paper Trade Journal, vol. 122, no. 2, pp. 35–43, 1946.
  20. Markblatt (IV/29 Zellcheming), “Bestimmung der Alphacellulose und de langeunloslichen Anteils von Zellstoffen,” German Association of Cellulose Chemists and Engineers,1951.
  21. W. C. Oliver and G. M. Pharr, “Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” Journal of Materials Research, vol. 7, no. 6, pp. 1564–1580, 1992. View at Scopus
  22. G. Wang, Y. Yu, S. Q. Shi, J. Wang, S. Cao, and H. Cheng, “A micro-tension test method for measuring tensile properties of individual cellulosic fibers,” Wood and Fiber Science. In press.
  23. ASTM D1037-06a, “Standard test methods for evaluating properties of wood-base fiber and particle panel materials,” ASTM International, 2006.
  24. P. Zadorecki and A. J. Michell, “Future prospects for wood cellulose as reinforcement in organic polymer composites,” Polymer Composites, vol. 10, no. 2, pp. 69–77, 1989. View at Scopus
  25. M. Chabannes, K. Ruel, A. Yoshinaga et al., “In situ analysis of lignins in transgenic tobacco reveals a differential impact of individual transformations on the spatial patterns of lignin deposition at the cellular and subcellular levels,” The Plant Journal, vol. 28, no. 3, pp. 271–282, 2001. View at Publisher · View at Google Scholar · View at Scopus