About this Journal Submit a Manuscript Table of Contents
International Journal of Polymer Science
Volume 2011 (2011), Article ID 290602, 19 pages
http://dx.doi.org/10.1155/2011/290602
Review Article

Polymeric Scaffolds in Tissue Engineering Application: A Review

Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama 350-8585, Japan

Received 16 May 2011; Revised 29 June 2011; Accepted 9 July 2011

Academic Editor: Shanfeng Wang

Copyright © 2011 Brahatheeswaran Dhandayuthapani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Langer and J. P. Vacanti, “Tissue engineering,” Science, vol. 260, no. 5110, pp. 920–926, 1993. View at Scopus
  2. R. M. Nerem, “Tissue engineering in the USA,” Medical and Biological Engineering and Computing, vol. 30, no. 4, pp. CE8–CE12, 1992. View at Scopus
  3. R. Langer and D. A. Tirrell, “Designing materials for biology and medicine,” Nature, vol. 428, no. 6982, pp. 487–492, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. J. R. Fuchs, B. A. Nasseri, and J. P. Vacanti, “Tissue engineering: a 21st century solution to surgical reconstruction,” Annals of Thoracic Surgery, vol. 72, no. 2, pp. 577–591, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. I. V. Yannas, J. F. Burke, C. Huang, and P. L. Gordon, “Suppression of in vivo degradability and of immunogenicity of collagen by reaction with glycosaminoglycans,” Polymer Preprints, vol. 16, pp. 209–214, 1975. View at Scopus
  6. I. V. Yannas, J. F. Burke, P. L. Gordon, and C. Huang, “Multilayer membrane useful as synthetic skin,” US patent 4060081, 1977.
  7. I. V. Yannas and J. F. Burke, “Design of an artificial skin. I. Basic design principles,” Journal of Biomedical Materials Research, vol. 14, no. 1, pp. 65–81, 1980. View at Scopus
  8. I. V. Yannas, J. F. Burke, M. Warpehoski et al., “Prompt, long-term functional replacement of skin,” Transactions—American Society for Artificial Internal Organs, vol. 27, pp. 19–23, 1981. View at Scopus
  9. I. V. Yannas, J. F. Burke, D. P. Orgill, and E. M. Skrabut, “Regeneration of skin following closure of deep wounds with a biodegradable template,” Transactions of the Society For Biomaterials, vol. 5, pp. 24–29, 1982. View at Scopus
  10. J. F. Burke, O. V. Yannas, and W. C. Quinby Jr., “Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury,” Annals of Surgery, vol. 194, no. 4, pp. 413–427, 1981. View at Scopus
  11. I. V. Yannas, D. P. Orgill, J. Silver, T. V. Norregaard, N. T. Zervas, and W. C. Schoene, “Polymeric template facilitates regeneration of sciatic nerves across 15-mm gap,” Transactions of the Society For Biomaterials, vol. 8, p. 146, 1985. View at Scopus
  12. W. C. Hsu, M. H. Spilker, I. V. Yannas, and P. A. D. Rubin, “Inhibition of conjunctival scarring and contraction by a porous collagen-glycosaminoglycan implant,” Investigative Ophthalmology and Visual Science, vol. 41, no. 9, pp. 2404–2411, 2000. View at Scopus
  13. S. Ramakrishna, J. Mayer, E. Wintermantel, and K. W. Leong, “Biomedical applications of polymer-composite materials: a review,” Composites Science and Technology, vol. 61, no. 9, pp. 1189–1224, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Vert, “Aliphatic polyesters: great degradable polymers that cannot do everything,” Biomacromolecules, vol. 6, no. 2, pp. 538–546, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. E. Piskin, “Biodegradable polymers as biomaterials,” Journal of Biomaterials Science Polymer Edition, vol. 6, pp. 775–795, 1994.
  16. Y. Ji, K. Ghosh, X. Z. Shu et al., “Electrospun three-dimensional hyaluronic acid nanofibrous scaffolds,” Biomaterials, vol. 27, no. 20, pp. 3782–3792, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. W. H. Eaglstein and V. Falanga, “Tissue engineering and the development of Apligraf a human skin equivalent,” Advances in Wound Care, vol. 11, supplement 4, pp. 1–8, 1998. View at Scopus
  18. B. D. Boyan, C. H. Lohmann, J. Romero, and Z. Schwartz, “Bone and cartilage tissue engineering,” Clinics in Plastic Surgery, vol. 26, no. 4, pp. 629–645, 1999. View at Scopus
  19. J. Mayer, E. Karamuk, T. Akaike, and E. Wintermantel, “Matrices for tissue engineering-scaffold structure for a bioartificial liver support system,” Journal of Controlled Release, vol. 64, no. 1–3, pp. 81–90, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. J. E. Mayer, T. Shin'oka, and D. Shum-Tim, “Tissue engineering of cardiovascular structures,” Current Opinion in Cardiology, vol. 12, no. 6, pp. 528–532, 1997. View at Scopus
  21. F. Oberpenning, J. Meng, J. J. Yoo, and A. Atala, “De novo reconstitution of a functional mammalian urinary bladder by tissue engineering,” Nature Biotechnology, vol. 17, no. 2, pp. 149–155, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. E. Tziampazis and A. Sambanis, “Tissue engineering of a bioartificial pancreas: modeling the cell environment and device function,” Biotechnology Progress, vol. 11, no. 2, pp. 115–126, 1995. View at Scopus
  23. J. Mohammad, J. Shenaq, E. Rabinovsky, and S. Shenaq, “Modulation of peripheral nerve regeneration: a tissue-engineering approach. The role of amnion tube nerve conduit across a 1-centimeter nerve gap,” Plastic and Reconstructive Surgery, vol. 105, no. 2, pp. 660–666, 2000. View at Scopus
  24. L. Germain, F. A. Auger, E. Grandbois et al., “Reconstructed human cornea produced in vitro by tissue engineering,” Pathobiology, vol. 67, no. 3, pp. 140–147, 1999. View at Publisher · View at Google Scholar · View at Scopus
  25. C. A. Diedwardo, P. Petrosko, T. O. Acarturk, P. A. Dimilia, W. A. Laframboise, and P. C. Johnson, “Muscle tissue engineering,” Clinics in Plastic Surgery, vol. 26, no. 4, pp. 647–656, 1999. View at Scopus
  26. L. S. Nair and C. T. Laurencin, “Biodegradable polymers as biomaterials,” Progress in Polymer Science, vol. 32, no. 8-9, pp. 762–798, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. I. V. Yannas, “Classes of materials used in medicine: natural materials,” in Biomaterials Science—An Introduction to Materials in Medicine, B. D. Ratner, A. S. Hoffman, F. J. Schoen, and J. Lemons, Eds., pp. 127–136, Elsevier Academic Press, San Diego, Calif, USA, 2004.
  28. P. Gunatillake, R. Mayadunne, and R. Adhikari, “Recent developments in biodegradable synthetic polymers,” Biotechnology Annual Review, vol. 12, pp. 301–347, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. P. X. Ma, “Scaffolds for tissue fabrication,” Materials Today, vol. 7, no. 5, pp. 30–40, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. L. J. Chen and M. Wang, “Production and evaluation of biodegradable composites based on PHB-PHV copolymer,” Biomaterials, vol. 23, no. 13, pp. 2631–2639, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. L. L. Hench, “Bioceramics,” Journal of the American Ceramic Society, vol. 81, no. 7, pp. 1705–1727, 1998. View at Scopus
  32. M. G. Cascone, N. Barbani, C. Cristallini, P. Giusti, G. Ciardelli, and L. Lazzeri, “Bioartificial polymeric materials based on polysaccharides,” Journal of Biomaterials Science, vol. 12, no. 3, pp. 267–281, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. G. Ciardelli, V. Chiono, G. Vozzi et al., “Blends of poly-(ε-caprolactone) and polysaccharides in tissue engineering applications,” Biomacromolecules, vol. 6, no. 4, pp. 1961–1976, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. J. A. Roether, A. R. Boccaccini, L. L. Hench, V. Maquet, S. Gautier, and R. Jérôme, “Development and in vitro characterisation of novel bioresorbable and bioactive composite materials based on polylactide foams and Bioglass® for tissue engineering applications,” Biomaterials, vol. 23, no. 18, pp. 3871–3878, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. A. G. Mikos, G. Sarakinos, S. M. Leite, J. P. Vacanti, and R. Langer, “Laminated three-dimensional biodegradable foams for use in tissue engineering,” Biomaterials, vol. 14, no. 5, pp. 323–330, 1993. View at Publisher · View at Google Scholar
  36. A. G. Mikos, A. J. Thorsen, L. A. Czerwonka et al., “Preparation and characterization of poly(l-lactic acid) foams,” Polymer, vol. 35, no. 5, pp. 1068–1077, 1994.
  37. K. Ochi, G. Chen, T. Ushida et al., “Use of isolated mature osteoblasts in abundance acts as desired-shaped bone regeneration in combination with a modified poly-DL-lactic-co-glycolic acid (PLGA)-collagen sponge,” Journal of Cellular Physiology, vol. 194, no. 1, pp. 45–53, 2003. View at Publisher · View at Google Scholar · View at PubMed
  38. C. E. Holy, M. S. Shoichet, and J. E. Davies, “Engineering three-dimensional bone tissue in vitro using biodegradable scaffolds: investigating initial cell-seeding density and culture period,” Journal of Biomedical Materials Research, vol. 51, no. 3, pp. 376–382, 2000. View at Publisher · View at Google Scholar
  39. J. M. Karp, M. S. Shoichet, and J. E. Davies, “Bone formation on two-dimensional poly(DL-lactide-co-glycolide) (PLGA) films and three-dimensional PLGA tissue engineering scaffolds in vitro,” Journal of Biomedical Materials Research A, vol. 64, no. 2, pp. 388–396, 2003.
  40. H. G. Kang, S. Y. Kim, and Y. M. Lee, “Novel porous gelatin scaffolds by overrun/particle leaching process for tissue engineering applications,” Journal of Biomedical Materials Research B, vol. 79, no. 2, pp. 388–397, 2006. View at Publisher · View at Google Scholar · View at PubMed
  41. D. J. Mooney, D. F. Baldwin, N. P. Suh, J. P. Vacanti, and R. Langer, “Novel approach to fabricate porous sponges of poly(D,L-lactic-co-glycolic acid) without the use of organic solvents,” Biomaterials, vol. 17, no. 14, pp. 1417–1422, 1996. View at Publisher · View at Google Scholar
  42. J. J. Yoon and T. G. Park, “Degradation behaviors of biodegradable macroporous scaffolds prepared by gas foaming of effervescent salts,” Journal of Biomedical Materials Research, vol. 55, no. 3, pp. 401–408, 2001. View at Publisher · View at Google Scholar
  43. W. L. Murphy, R. G. Dennis, J. L. Kileny, and D. J. Mooney, “Salt fusion: an approach to improve pore interconnectivity within tissue engineering scaffolds,” Tissue Engineering, vol. 8, no. 1, pp. 43–52, 2002. View at Publisher · View at Google Scholar · View at PubMed
  44. C. T. Laurencin, M. A. Attawia, H. E. Elgendy, and K. M. Herbert, “Tissue engineered bone-regeneration using degradable polymers: the formation of mineralized matrices,” Bone, vol. 19, no. 1, 1996. View at Publisher · View at Google Scholar
  45. J. E. Devin, M. A. Attawia, and C. T. Laurencin, “Three-dimensional degradable porous polymer-ceramic matrices for use in bone repair,” Journal of Biomaterials Science, vol. 7, no. 8, pp. 661–669, 1996.
  46. B. H. Woo, J. W. Kostanski, S. Gebrekidan, B. A. Dani, B. C. Thanoo, and P. P. DeLuca, “Preparation, characterization and in vivo evaluation of 120-day poly(D,L-lactide) leuprolide microspheres,” Journal of Controlled Release, vol. 75, no. 3, pp. 307–315, 2001. View at Publisher · View at Google Scholar
  47. M. Borden, S. F. El-Amin, M. Attawia, and C. T. Laurencin, “Structural and human cellular assessment of a novel microsphere-based tissue engineered scaffold for bone repair,” Biomaterials, vol. 24, no. 4, pp. 597–609, 2003. View at Publisher · View at Google Scholar
  48. P. B. Malafaya, A. J. Pedro, A. Peterbauer, C. Gabriel, H. Redl, and R. L. Reis, “Chitosan particles agglomerated scaffolds for cartilage and osteochondral tissue engineering approaches with adipose tissue derived stem cells,” Journal of Materials Science: Materials in Medicine, vol. 16, no. 12, pp. 1077–1085, 2005. View at Publisher · View at Google Scholar · View at PubMed
  49. P. B. Malafaya, T. C. Santos, M. van Griensven, and R. L. Reis, “Morphology, mechanical characterization and in vivo neo-vascularization of chitosan particle aggregated scaffolds architectures,” Biomaterials, vol. 29, no. 29, pp. 3914–3926, 2008. View at Publisher · View at Google Scholar · View at PubMed
  50. R. Zhang and P. X. Ma, “Porous poly(L-lactic acid)/apatite composites created by biomimetic process,” Journal of Biomedical Materials Research, vol. 45, no. 4, pp. 285–293, 1999. View at Publisher · View at Google Scholar
  51. Y. Ohya, H. Matsunami, E. Yamabe, and T. Ouchi, “Cell attachment and growth on films prepared from poly(depsipeptide-co-lactide) having various functional groups,” Journal of Biomedical Materials Research A, vol. 65, no. 1, pp. 79–88, 2003.
  52. Y. Ohya, H. Matsunami, and T. Ouchi, “Cell growth on the porous sponges prepared from poly(depsipeptide-co-lactide) having various functional groups,” Journal of Biomaterials Science, vol. 15, no. 1, pp. 111–123, 2004. View at Publisher · View at Google Scholar
  53. M. Borden, M. Attawia, Y. Khan, and C. T. Laurencin, “Tissue engineered microsphere-based matrices for bone repair: design and evaluation,” Biomaterials, vol. 23, no. 2, pp. 551–559, 2002. View at Publisher · View at Google Scholar
  54. J. Guan, K. L. Fujimoto, M. S. Sacks, and W. R. Wagner, “Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications,” Biomaterials, vol. 26, no. 18, pp. 3961–3971, 2005. View at Publisher · View at Google Scholar · View at PubMed
  55. T. J. Blokhuis, M. F. Termaat, F. C. Den Boer, P. Patka, F. C. Bakker, and H. J. T. M. Haarman, “Properties of calcium phosphate ceramics in relation to their in vivo behavior,” Journal of Trauma—Injury, Infection and Critical Care, vol. 48, no. 1, pp. 179–186, 2000.
  56. T. A. Holland, J. K. V. Tessmar, Y. Tabata, and A. G. Mikos, “Transforming growth factor-β1 release from oligo(poly(ethylene glycol) fumarate) hydrogels in conditions that model the cartilage wound healing environment,” Journal of Controlled Release, vol. 94, no. 1, pp. 101–114, 2004. View at Publisher · View at Google Scholar
  57. O. Gauthier, R. Müller, D. Von Stechow et al., “In vivo bone regeneration with injectable calcium phosphate biomaterial: a three-dimensional micro-computed tomographic, biomechanical and SEM study,” Biomaterials, vol. 26, no. 27, pp. 5444–5453, 2005. View at Publisher · View at Google Scholar · View at PubMed
  58. B. Jeong, Y. H. Bae, and S. W. Kim, “Thermoreversible gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions,” Macromolecules, vol. 32, no. 21, pp. 7064–7069, 1999.
  59. S. Ibusuki, Y. Fujii, Y. Iwamoto, and T. Matsuda, “Tissue-engineered cartilage using an injectable and in situ gelable thermoresponsive gelatin: fabrication and in vitro performance,” Tissue Engineering, vol. 9, no. 2, pp. 371–384, 2003. View at Publisher · View at Google Scholar · View at PubMed
  60. J. Y. Seong, Y. J. Jun, B. Jeong, and Y. S. Sohn, “New thermogelling poly(organophosphazenes) with methoxypoly(ethylene glycol) and oligopeptide as side groups,” Polymer, vol. 46, no. 14, pp. 5075–5081, 2005. View at Publisher · View at Google Scholar
  61. J. Yeh, Y. Ling, J. M. Karp et al., “Micromolding of shape-controlled, harvestable cell-laden hydrogels,” Biomaterials, vol. 27, no. 31, pp. 5391–5398, 2006. View at Publisher · View at Google Scholar · View at PubMed
  62. J. Fukuda, A. Khademhosseini, Y. Yeo et al., “Micromolding of photocrosslinkable chitosan hydrogel for spheroid microarray and co-cultures,” Biomaterials, vol. 27, no. 30, pp. 5259–5267, 2006. View at Publisher · View at Google Scholar · View at PubMed
  63. A. Khademhosseini, G. Eng, J. Yeh et al., “Micromolding of photocrosslinkable hyaluronic acid for cell encapsulation and entrapment,” Journal of Biomedical Materials Research A, vol. 79, no. 3, pp. 522–532, 2006. View at Publisher · View at Google Scholar · View at PubMed
  64. D. J. Beebe, J. S. Moore, J. M. Bauer et al., “Functional hydrogel structures for autonomous flow control inside microfluidic channels,” Nature, vol. 404, no. 6778, pp. 588–590, 2000. View at Publisher · View at Google Scholar · View at PubMed
  65. V. A. Liu and S. N. Bhatia, “Three-dimensional photopatterning of hydrogels containing living cells,” Biomedical Microdevices, vol. 4, no. 4, pp. 257–266, 2002. View at Publisher · View at Google Scholar
  66. D. Dendukuri, D. C. Pregibon, J. Collins, T. A. Hatton, and P. S. Doyle, “Continuous-flow lithography for high-throughput microparticle synthesis,” Nature Materials, vol. 5, no. 5, pp. 365–369, 2006. View at Publisher · View at Google Scholar · View at PubMed
  67. T. Nisisako, T. Torii, and T. Higuchi, “Droplet formation in a microchannel network,” Lab on a Chip—Miniaturisation for Chemistry and Biology, vol. 2, no. 1, pp. 24–26, 2002. View at Publisher · View at Google Scholar · View at PubMed
  68. J. A. Burdick, A. Khademhosseini, and R. Langer, “Fabrication of gradient hydrogels using a microfluidics/photopolymerization process,” Langmuir, vol. 20, no. 13, pp. 5153–5156, 2004. View at Publisher · View at Google Scholar
  69. S. Xu, Z. Nie, M. Seo et al., “Generation of monodisperse particles by using microfluidics: control over size, shape, and composition,” Angewandte Chemie International Edition, vol. 44, no. 5, pp. 724–728, 2005. View at Publisher · View at Google Scholar · View at PubMed
  70. N. A. Peppas and A. R. Khare, “Preparation, structure and diffusional behavior of hydrogels in controlled release,” Advanced Drug Delivery Reviews, vol. 11, no. 1-2, pp. 1–35, 1993.
  71. T. Alexakis, K. Boadid, D. Guong, et al., “Microencapsulation of DNA within alginate microspheres and crosslinked chitosan membranes for in vivo application,” Applied Biochemistry and Biotechnology, vol. 50, no. 1, pp. 93–106, 1995.
  72. C. P. Reis, A. J. Ribeiro, R. J. Neufeld, and F. Veiga, “Alginate microparticles as novel carrier for oral insulin delivery,” Biotechnology and Bioengineering, vol. 96, no. 5, pp. 977–989, 2007. View at Publisher · View at Google Scholar · View at PubMed
  73. G. Steinhoff, U. Stock, N. Karim et al., “Tissue engineering of pulmonary heart valves on allogenic acellular matrix conduits: In vivo restoration of valve tissue,” Circulation, vol. 102, no. 19, pp. III50–III55, 2000.
  74. D. E. Zhao, R. B. Li, W. Y. Liu et al., “Tissue-engineered heart valve on acellular aortic valve scaffold: in-vivo study,” Asian Cardiovascular and Thoracic Annals, vol. 11, no. 2, pp. 153–156, 2003.
  75. H. C. Liang, Y. Chang, C. K. Hsu, M. H. Lee, and H. W. Sung, “Effects of crosslinking degree of an acellular biological tissue on its tissue regeneration pattern,” Biomaterials, vol. 25, no. 17, pp. 3541–3552, 2004. View at Publisher · View at Google Scholar · View at PubMed
  76. A. Tachibana, Y. Furuta, H. Takeshima, T. Tanabe, and K. Yamauchi, “Fabrication of wool keratin sponge scaffolds for long-term cell cultivation,” Journal of Biotechnology, vol. 93, no. 2, pp. 165–170, 2002. View at Publisher · View at Google Scholar
  77. A. Tachibana, S. Kaneko, T. Tanabe, and K. Yamauchi, “Rapid fabrication of keratin-hydroxyapatite hybrid sponges toward osteoblast cultivation and differentiation,” Biomaterials, vol. 26, no. 3, pp. 297–302, 2005. View at Publisher · View at Google Scholar · View at PubMed
  78. K. Katoh, T. Tanabe, and K. Yamauchi, “Novel approach to fabricate keratin sponge scaffolds with controlled pore size and porosity,” Biomaterials, vol. 25, no. 18, pp. 4255–4262, 2004. View at Publisher · View at Google Scholar · View at PubMed
  79. J. Doshi and D. H. Reneker, “Electrospinning process and applications of electrospun fibers,” Journal of Electrostatics, vol. 35, no. 2-3, pp. 151–160, 1995.
  80. W. J. Li, K. G. Danielson, P. G. Alexander, and R. S. Tuan, “Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(ε-caprolactone) scaffolds,” Journal of Biomedical Materials Research A, vol. 67, no. 4, pp. 1105–1114, 2003.
  81. J. Zeng, A. Aigner, F. Czubayko, T. Kissel, J. H. Wendorff, and A. Greiner, “Poly(vinyl alcohol) nanofibers by electrospinning as a protein delivery system and the retardation of enzyme release by additional polymer coatings,” Biomacromolecules, vol. 6, no. 3, pp. 1484–1488, 2005. View at Publisher · View at Google Scholar · View at PubMed
  82. S. Hirano, M. Zhang, M. Nakagawa, and T. Miyata, “Wet spun chitosan-collagen fibers, their chemical N-modifications, and blood compatibility,” Biomaterials, vol. 21, no. 10, pp. 997–1003, 2000. View at Publisher · View at Google Scholar
  83. S. J. Pomfret, P. N. Adams, N. P. Comfort, and A. P. Monkman, “Electrical and mechanical properties of polyaniline fibres produced by a one-step wet spinning process,” Polymer, vol. 41, no. 6, pp. 2265–2269, 2000. View at Publisher · View at Google Scholar
  84. H. Okuzaki, Y. Harashina, and H. Yan, “Highly conductive PEDOT/PSS microfibers fabricated by wet-spinning and dip-treatment in ethylene glycol,” European Polymer Journal, vol. 45, no. 1, pp. 256–261, 2009. View at Publisher · View at Google Scholar
  85. J. Lyons, C. Li, and F. Ko, “Melt-electrospinning—part I: processing parameters and geometric properties,” Polymer, vol. 45, no. 22, pp. 7597–7603, 2004. View at Publisher · View at Google Scholar
  86. C. J. Ellison, A. Phatak, D. W. Giles, C. W. Macosko, and F. S. Bates, “Melt blown nanofibers: fiber diameter distributions and onset of fiber breakup,” Polymer, vol. 48, no. 11, pp. 3306–3316, 2007. View at Publisher · View at Google Scholar
  87. K. Kim, C. Lee, I. W. Kim, and J. Kim, “Performance modification of a melt-blown filter medium via an additional nano-web layer prepared by electrospinning,” Fibers and Polymers, vol. 10, no. 1, pp. 60–64, 2009. View at Publisher · View at Google Scholar
  88. M. J. B. Wissink, R. Beernink, J. S. Pieper et al., “Binding and release of basic fibroblast growth factor from heparinized collagen matrices,” Biomaterials, vol. 22, no. 16, pp. 2291–2299, 2001. View at Publisher · View at Google Scholar
  89. F. Causa, P. A. Netti, and L. Ambrosio, “A multi-functional scaffold for tissue regeneration: the need to engineer a tissue analogue,” Biomaterials, vol. 28, no. 34, pp. 5093–5099, 2007. View at Publisher · View at Google Scholar · View at PubMed
  90. Y. C. Ho, F. L. Mi, H. W. Sung, and P. L. Kuo, “Heparin-functionalized chitosan-alginate scaffolds for controlled release of growth factor,” International Journal of Pharmaceutics, vol. 376, no. 1-2, pp. 69–75, 2009. View at Publisher · View at Google Scholar · View at PubMed
  91. P. Sepulveda and J. G. P. Binner, “Processing of cellular ceramics by foaming and in situ polymerisation of organic monomers,” Journal of the European Ceramic Society, vol. 19, no. 12, pp. 2059–2066, 1999.
  92. Q. Z. Chen, I. D. Thompson, and A. R. Boccaccini, “45S5 Bioglass®-derived glass-ceramic scaffolds for bone tissue engineering,” Biomaterials, vol. 27, no. 11, pp. 2414–2425, 2006. View at Publisher · View at Google Scholar · View at PubMed
  93. I. H. Jo, K. H. Shin, Y. M. Soon, Y. H. Koh, J. H. Lee, and H. E. Kim, “Highly porous hydroxyapatite scaffolds with elongated pores using stretched polymeric sponges as novel template,” Materials Letters, vol. 63, no. 20, pp. 1702–1704, 2009. View at Publisher · View at Google Scholar
  94. F. Li, Q. L. Feng, F. Z. Cui, H. D. Li, and H. Schubert, “A simple biomimetic method for calcium phosphate coating,” Surface and Coatings Technology, vol. 154, no. 1, pp. 88–93, 2002. View at Publisher · View at Google Scholar
  95. J. Chen, B. Chu, and B. S. Hsiao, “Mineralization of hydroxyapatite in electrospun nanofibrous poly(L-lactic acid) scaffolds,” Journal of Biomedical Materials Research A, vol. 79, no. 2, pp. 307–317, 2006. View at Publisher · View at Google Scholar · View at PubMed
  96. F. Yang, J. G. C. Wolke, and J. A. Jansen, “Biomimetic calcium phosphate coating on electrospun poly(ε-caprolactone) scaffolds for bone tissue engineering,” Chemical Engineering Journal, vol. 137, no. 1, pp. 154–161, 2008. View at Publisher · View at Google Scholar
  97. A. V. Lemmo, D. J. Rose, and T. C. Tisone, “Inkjet dispensing technology: applications in drug discovery,” Current Opinion in Biotechnology, vol. 9, no. 6, pp. 615–617, 1998. View at Publisher · View at Google Scholar
  98. P. Calvert, “Inkjet printing for materials and devices,” Chemistry of Materials, vol. 13, no. 10, pp. 3299–3305, 2001. View at Publisher · View at Google Scholar
  99. L. Pardo, W. Cris Wilson, and T. Boland, “Characterization of patterned self-assembled monolayers and protein arrays generated by the ink-jet method,” Langmuir, vol. 19, no. 5, pp. 1462–1466, 2003. View at Publisher · View at Google Scholar
  100. W. Y. Yeong, C. K. Chua, K. F. Leong, M. Chandrasekaran, and M. W. Lee, “Indirect fabrication of collagen scaffold based on inkjet printing technique,” Rapid Prototyping Journal, vol. 12, no. 4, pp. 229–237, 2006. View at Publisher · View at Google Scholar
  101. V. Mironov, T. Boland, T. Trusk, G. Forgacs, and R. R. Markwald, “Organ printing: computer-aided jet-based 3D tissue engineering,” Trends in Biotechnology, vol. 21, no. 4, pp. 157–161, 2003. View at Publisher · View at Google Scholar
  102. W. Sun, A. Darling, B. Starly, and J. Nam, “Computer-aided tissue engineering: overview, scope and challenges,” Biotechnology and Applied Biochemistry, vol. 39, part 1, pp. 29–47, 2004.
  103. W. Sun and P. Lal, “Recent development on computer aided tissue engineering—a review,” Computer Methods and Programs in Biomedicine, vol. 67, no. 2, pp. 85–103, 2002. View at Publisher · View at Google Scholar
  104. W. Sun, B. Starly, A. Darling, and C. Gomez, “Computer-aided tissue engineering: application to biomimetic modelling and design of tissue scaffolds,” Biotechnology and Applied Biochemistry, vol. 39, no. 1, pp. 49–58, 2004.
  105. Z. Fang, B. Starly, and W. Sun, “Computer-aided characterization for effective mechanical properties of porous tissue scaffolds,” CAD Computer Aided Design, vol. 37, no. 1, pp. 65–72, 2005. View at Publisher · View at Google Scholar
  106. S. Lalan, I. Pomerantseva, and J. P. Vacanti, “Tissue engineering and its potential impact on surgery,” World Journal of Surgery, vol. 25, no. 11, pp. 1458–1466, 2001. View at Publisher · View at Google Scholar
  107. T. Boland, V. Mironov, A. Gutowska, E. A. Roth, and R. R. Markwald, “Cell and organ printing 2: fusion of cell aggregates in three-dimensional gels,” Anatomical Record A, vol. 272, no. 2, pp. 497–502, 2003.
  108. N. Hirata, K. I. Matsumoto, T. Inishita, Y. Takenaka, Y. Suma, and H. Shintani, “Gamma-ray irradiation, autoclave and ethylene oxide sterilization to thermosetting polyurethane: sterilization to polyurethane,” Radiation Physics and Chemistry, vol. 46, no. 3, pp. 377–381, 1995. View at Publisher · View at Google Scholar
  109. K. A. Hooper, J. D. Cox, and J. Kohn, “Comparison of the effect of ethylene oxide and γ-irradiation on selected tyrosine-derived polycarbonates and poly(L-lactic acid),” Journal of Applied Polymer Science, vol. 63, no. 11, pp. 1499–1510, 1997.
  110. C. E. Holy, C. Cheng, J. E. Davies, and M. S. Shoichet, “Optimizing the sterilization of PLGA scaffolds for use in tissue engineering,” Biomaterials, vol. 22, no. 1, pp. 25–31, 2001. View at Publisher · View at Google Scholar
  111. C. Volland, M. Wolff, and T. Kissel, “The influence of terminal gamma-sterilization on captopril containing poly(D,L-lactide-co-glycolide) microspheres,” Journal of Controlled Release, vol. 31, no. 3, pp. 293–304, 1994. View at Publisher · View at Google Scholar
  112. M. B. Sintzel, K. S. Abdellaoui, K. Mader, et al., “Influence of irradiation sterilization on a semi-solid poly(ortho ester),” International Journal of Pharmaceutics, vol. 175, pp. 165–176, 1998.
  113. L. Montanari, M. Costantini, E. C. Signoretti et al., “Gamma irradiation effects on poly(DL-lactictide-co-glycolide) microspheres,” Journal of Controlled Release, vol. 56, no. 1–3, pp. 219–229, 1998. View at Publisher · View at Google Scholar
  114. M. Ohrlander, R. Erickson, R. Palmgren, A. Wirsen, and A. C. Albertsson, “The effect of electron beam irradiation on PCL and PDXO-X monitored by luminescence and electron spin resonance measurements,” Polymer, vol. 41, pp. 1277–1286, 1999.
  115. J. S. C. Loo, C. P. Ooi, and F. Y. C. Boey, “Degradation of poly(lactide-co-glycolide) (PLGA) and poly(L-lactide) (PLLA) by electron beam radiation,” Biomaterials, vol. 26, no. 12, pp. 1359–1367, 2005. View at Publisher · View at Google Scholar · View at PubMed
  116. K. Odelius, P. Plikk, and A. C. Albertsson, “The influence of composition of porous copolyester scaffolds on reactions induced by irradiation sterilization,” Biomaterials, vol. 29, no. 2, pp. 129–140, 2008. View at Publisher · View at Google Scholar · View at PubMed
  117. E. M. Darmady, K. E. Hughes, J. D. Jones, D. Prince, and W. Tuke, “Sterilization by dry heat,” Journal of Clinical Pathology, vol. 14, pp. 38–44, 1961.
  118. Q. Fu, M. N. Rahaman, B. S. Bal, and R. F. Brown, “In vitro cellular response to hydroxyapatite scaffolds with oriented pore architectures,” Materials Science and Engineering C, vol. 29, no. 7, pp. 2147–2153, 2009. View at Publisher · View at Google Scholar
  119. F. A. Müller, L. Müller, I. Hofmann, P. Greil, M. M. Wenzel, and R. Staudenmaier, “Cellulose-based scaffold materials for cartilage tissue engineering,” Biomaterials, vol. 27, no. 21, pp. 3955–3963, 2006. View at Publisher · View at Google Scholar · View at PubMed
  120. K. Gellynck, P. C. M. Verdonk, E. Van Nimmen et al., “Silkworm and spider silk scaffolds for chondrocyte support,” Journal of Materials Science: Materials in Medicine, vol. 19, no. 11, pp. 3399–3409, 2008. View at Publisher · View at Google Scholar · View at PubMed
  121. S. Terasaka, Y. Iwasaki, N. Shinya, and T. Uchida, “Fibrin glue and polyglycolic acid nonwoven fabric as a biocompatible dural substitute,” Neurosurgery, vol. 58, no. 1, pp. S-134–S-138, 2006. View at Publisher · View at Google Scholar · View at PubMed
  122. P. B. Maurus and C. C. Kaeding, “Bioabsorbable implant material review,” Operative Techniques in Sports Medicine, vol. 12, no. 3, pp. 158–160, 2004. View at Publisher · View at Google Scholar
  123. H. H. Lu, J. A. Cooper, S. Manuel et al., “Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies,” Biomaterials, vol. 26, no. 23, pp. 4805–4816, 2005. View at Publisher · View at Google Scholar · View at PubMed
  124. J. A. Cooper, H. H. Lu, F. K. Ko, J. W. Freeman, and C. T. Laurencin, “Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation,” Biomaterials, vol. 26, no. 13, pp. 1523–1532, 2005. View at Publisher · View at Google Scholar · View at PubMed
  125. M. Zilberman, K. D. Nelson, and R. C. Eberhart, “Mechanical properties and in vitro degradation of bioresorbable fibers and expandable fiber-based stents,” Journal of Biomedical Materials Research B, vol. 74, no. 2, pp. 792–799, 2005. View at Publisher · View at Google Scholar · View at PubMed
  126. S. Leinonen, E. Suokas, M. Veiranto, P. Tormala, T. Waris, and N. Ashammakhi, “Healing power of bioadsorbable ciprofloxacin- containing self reinforced poly(L/DL-lactide 70/30 bioactive glass 13 miniscrews in human cadaver bone,” Journal of Craniofacial Surgery, vol. 13, pp. 212–218, 2002.
  127. C. W. Pouton and S. Akhtar, “Biosynthetic polyhydroxyalkanoates and their potential in drug delivery,” Advanced Drug Delivery Reviews, vol. 18, no. 2, pp. 133–162, 1996. View at Publisher · View at Google Scholar
  128. B. Saad, T. D. Hirt, M. Welti, G. K. Uhlschmid, P. Neuenschwander, and U. W. Suter, “Development of degradable polyesterurethanes for medical applications: in vitro and in vivo evaluations,” Journal of Biomedical Materials Research, vol. 36, no. 1, pp. 65–74, 1997. View at Publisher · View at Google Scholar
  129. I. C. Bonzani, R. Adhikari, S. Houshyar, R. Mayadunne, P. Gunatillake, and M. M. Stevens, “Synthesis of two-component injectable polyurethanes for bone tissue engineering,” Biomaterials, vol. 28, no. 3, pp. 423–433, 2007. View at Publisher · View at Google Scholar · View at PubMed
  130. J. Heller, “Ocular delivery using poly(ortho esters),” Advanced Drug Delivery Reviews, vol. 57, no. 14, pp. 2053–2062, 2005. View at Publisher · View at Google Scholar · View at PubMed
  131. D. S. Katti, S. Lakshmi, R. Langer, and C. T. Laurencin, “Toxicity, biodegradation and elimination of polyanhydrides,” Advanced Drug Delivery Reviews, vol. 54, no. 7, pp. 933–961, 2002. View at Publisher · View at Google Scholar
  132. C. Vauthier, C. Dubernet, C. Chauvierre, I. Brigger, and P. Couvreur, “Drug delivery to resistant tumors: the potential of poly(alkyl cyanoacrylate) nanoparticles,” Journal of Controlled Release, vol. 93, no. 2, pp. 151–160, 2003. View at Publisher · View at Google Scholar
  133. P. Sai and M. Babu, “Collagen based dressings—a review,” Burns, vol. 26, no. 1, pp. 54–62, 2000. View at Publisher · View at Google Scholar
  134. X. Duan, C. McLaughlin, M. Griffith, and H. Sheardown, “Biofunctionalization of collagen for improved biological response: scaffolds for corneal tissue engineering,” Biomaterials, vol. 28, no. 1, pp. 78–88, 2007. View at Publisher · View at Google Scholar · View at PubMed
  135. D. R. Hunt, S. A. Joanovic, U. M. E. Wikesjo, J. M. Wozney, and D. W. Bernard, “Hyaluronan supports recombinant human bone morphogenetic protein-2 induced bone reconstruction of advanced alveolar ridge defects in dogs. A pilot study,” Journal of Periodontology, vol. 72, pp. 651–657, 2001.
  136. B. L. Eppley and B. Dadvand, “Injectable soft-tissue fillers: clinical overview,” Plastic and Reconstructive Surgery, vol. 118, no. 4, pp. 98e–106e, 2006. View at Publisher · View at Google Scholar · View at PubMed
  137. Y. Kato, S. Nakamura, and M. Nishimura, “Beneficial actions of hyaluronan (HA) on arthritic joints: effects of molecular weight of HA on elasticity of cartilage matrix,” Biorheology, vol. 43, no. 3-4, pp. 347–354, 2006.
  138. D. W. Hutmacher, “Scaffold design and fabrication technologies for engineering tissues—State of the art and future perspectives,” Journal of Biomaterials Science, vol. 12, no. 1, pp. 107–124, 2001. View at Publisher · View at Google Scholar
  139. L. E. Freed, G. Vunjak-Novakovic, R. J. Biron et al., “Biodegradable polymer scaffolds for tissue engineering,” Biotechnology, vol. 12, no. 7, pp. 689–693, 1994. View at Publisher · View at Google Scholar
  140. L. E. Freed and G. Vunjak-Novakovic, “Culture of organized cell communities,” Advanced Drug Delivery Reviews, vol. 33, no. 1-2, pp. 15–30, 1998. View at Publisher · View at Google Scholar
  141. P. X. Ma and R. Zhang, “Microtubular architecture of biodegradable polymer scaffolds,” Journal of Biomedical Materials Research, vol. 56, no. 4, pp. 469–477, 2001. View at Publisher · View at Google Scholar · View at Scopus
  142. S. Freiberg and X. X. Zhu, “Polymer microspheres for controlled drug release,” International Journal of Pharmaceutics, vol. 282, no. 1-2, pp. 1–18, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  143. D. J. Mooney, G. Organ, J. P. Vacanti, and R. Langer, “Design and fabrication of biodegradable polymer devices to engineer tubular tissues,” Cell Transplantation, vol. 3, no. 2, pp. 203–210, 1994. View at Scopus
  144. G. Wei and P. X. Ma, “Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering,” Biomaterials, vol. 25, no. 19, pp. 4749–4757, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  145. E. M. Ouriemchi and J. M. Vergnaud, “Processes of drug transfer with three different polymeric systems with transdermal drug delivery,” Computational and Theoretical Polymer Science, vol. 10, no. 5, pp. 391–401, 2000. View at Publisher · View at Google Scholar · View at Scopus
  146. Q. Hou, D. W. Grijpma, and J. Feijen, “Preparation of porous poly(ε-caprolactone) structures,” Macromolecular Rapid Communications, vol. 23, no. 4, pp. 247–252, 2002. View at Publisher · View at Google Scholar · View at Scopus
  147. Q. Hou, D. W. Grijpma, and J. Feijen, “Porous polymeric structures for tissue engineering prepared by a coagulation, compression moulding and salt leaching technique,” Biomaterials, vol. 24, no. 11, pp. 1937–1947, 2003. View at Publisher · View at Google Scholar · View at Scopus
  148. M. Cabodi, N. W. Choi, J. P. Gleghorn, C. S. D. Lee, L. J. Bonassar, and A. D. Stroock, “A microfluidic biomaterial,” Journal of the American Chemical Society, vol. 127, no. 40, pp. 13788–13789, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  149. M. S. Jhon and J. D. Andrade, “Water and hydrogels,” Journal of Biomedical Materials Research, vol. 7, no. 6, pp. 509–522, 1973. View at Scopus
  150. A. S. Hoffman, “Hydrogels for biomedical applications,” Annals of the New York Academy of Sciences, vol. 944, pp. 62–73, 2001. View at Scopus
  151. J. A. Hubbell, “Bioactive biomaterials,” Current Opinion in Biotechnology, vol. 10, no. 2, pp. 123–129, 1999. View at Publisher · View at Google Scholar · View at Scopus
  152. K. Y. Lee and D. J. Mooney, “Hydrogels for tissue engineering,” Chemical Reviews, vol. 101, no. 7, pp. 1869–1879, 2001. View at Publisher · View at Google Scholar · View at Scopus
  153. N. A. Peppas and A. R. Khare, “Preparation, structure and diffusional behavior of hydrogels in controlled release,” Advanced Drug Delivery Reviews, vol. 11, no. 1-2, pp. 1–35, 1993. View at Scopus
  154. Y. Tabata, “Tissue regeneration based on growth factor release,” Tissue Engineering, vol. 9, no. 4, pp. 5–15, 2003.
  155. S. J. Bryant and K. S. Anseth, “The effects of scaffold thickness on tissue engineered cartilage in photocrosslinked poly(ethylene oxide) hydrogels,” Biomaterials, vol. 22, no. 6, pp. 619–626, 2001. View at Publisher · View at Google Scholar · View at Scopus
  156. D. G. Wallace and J. Rosenblatt, “Collagen gel systems for sustained delivery and tissue engineering,” Advanced Drug Delivery Reviews, vol. 55, no. 12, pp. 1631–1649, 2003. View at Publisher · View at Google Scholar · View at Scopus
  157. U. J. Kim, J. Park, C. Li, H. J. Jin, R. Valluzzi, and D. L. Kaplan, “Structure and properties of silk hydrogels,” Biomacromolecules, vol. 5, no. 3, pp. 786–792, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  158. D. Eyrich, F. Brandl, B. Appel et al., “Long-term stable fibrin gels for cartilage engineering,” Biomaterials, vol. 28, no. 1, pp. 55–65, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  159. L. A. Solchaga, J. Gao, J. E. Dennis et al., “Treatment of osteochondral defects with autologous bone marrow in a hyaluronan-based delivery vehicle,” Tissue Engineering, vol. 8, no. 2, pp. 333–347, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  160. H. J. Kong, M. K. Smith, and D. J. Mooney, “Designing alginate hydrogels to maintain viability of immobilized cells,” Biomaterials, vol. 24, no. 22, pp. 4023–4029, 2003. View at Publisher · View at Google Scholar · View at Scopus
  161. J. K. Francis Suh and H. W. T. Matthew, “Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review,” Biomaterials, vol. 21, no. 24, pp. 2589–2598, 2000. View at Scopus
  162. R. H. Schmedlen, K. S. Masters, and J. L. West, “Photocrosslinkable polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering,” Biomaterials, vol. 23, no. 22, pp. 4325–4332, 2002. View at Publisher · View at Google Scholar · View at Scopus
  163. E. Behravesh and A. G. Mikos, “Three-dimensional culture of differentiating marrow stromal osteoblasts in biomimetic poly(propylene fumarate-co-ethylene glycol)-based macroporous hydrogels,” Journal of Biomedical Materials Research A, vol. 66, no. 3, pp. 698–706, 2003. View at Scopus
  164. S. J. Bryant, K. A. Davis-Arehart, N. Luo, R. K. Shoemaker, J. A. Arthur, and K. S. Anseth, “Synthesis and characterization of photopolymerized multifunctional hydrogels: water-soluble poly(vinyl alcohol) and chondroitin sulfate macromers for chondrocyte encapsulation,” Macromolecules, vol. 37, no. 18, pp. 6726–6733, 2004. View at Publisher · View at Google Scholar · View at Scopus
  165. P. Berndt, G. B. Fields, and M. Tirrell, “Synthetic lipidation of peptides and amino acids: monolayer structure and properties,” Journal of the American Chemical Society, vol. 117, no. 37, pp. 9515–9522, 1995. View at Publisher · View at Google Scholar · View at Scopus
  166. S. R. Bhattarai, N. Bhattarai, H. K. Yi, P. H. Hwang, D. I. Cha, and H. Y. Kim, “Novel biodegradable electrospun membrane: scaffold for tissue engineering,” Biomaterials, vol. 25, no. 13, pp. 2595–2602, 2004. View at Publisher · View at Google Scholar · View at Scopus
  167. Z. Ma, M. Kotaki, R. Inai, and S. Ramakrishna, “Potential of nanofiber matrix as tissue-engineering scaffolds,” Tissue Engineering, vol. 11, no. 1-2, pp. 101–109, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  168. R. Vasita and D. S. Katti, “Nanofibers and their applications in tissue engineering,” International Journal of Nanomedicine, vol. 1, no. 1, pp. 15–30, 2006. View at Publisher · View at Google Scholar · View at Scopus
  169. J. A. Matthews, G. E. Wnek, D. G. Simpson, and G. L. Bowlin, “Electrospinning of collagen nanofibers,” Biomacromolecules, vol. 3, no. 2, pp. 232–238, 2002. View at Publisher · View at Google Scholar · View at Scopus
  170. Y. Zhang, H. Ouyang, T. L. Chwee, S. Ramakrishna, and Z. M. Huang, “Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds,” Journal of Biomedical Materials Research B, vol. 72, no. 1, pp. 156–165, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  171. X. Geng, O. H. Kwon, and J. Jang, “Electrospinning of chitosan dissolved in concentrated acetic acid solution,” Biomaterials, vol. 26, no. 27, pp. 5427–5432, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  172. I. C. Um, D. Fang, B. S. Hsiao, A. Okamoto, and B. Chu, “Electro-spinning and electro-blowing of hyaluronic acid,” Biomacromolecules, vol. 5, no. 4, pp. 1428–1436, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  173. H. J. Jin, J. Chen, V. Karageorgiou, G. H. Altman, and D. L. Kaplan, “Human bone marrow stromal cell responses on electrospun silk fibroin mats,” Biomaterials, vol. 25, no. 6, pp. 1039–1047, 2004. View at Publisher · View at Google Scholar · View at Scopus
  174. F. Yang, R. Murugan, S. Wang, and S. Ramakrishna, “Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering,” Biomaterials, vol. 26, no. 15, pp. 2603–2610, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  175. S. A. Riboldi, M. Sampaolesi, P. Neuenschwander, G. Cossu, and S. Mantero, “Electrospun degradable polyesterurethane membranes: potential scaffolds for skeletal muscle tissue engineering,” Biomaterials, vol. 26, no. 22, pp. 4606–4615, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  176. W. J. Li, K. G. Danielson, P. G. Alexander, and R. S. Tuan, “Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(ε-caprolactone) scaffolds,” Journal of Biomedical Materials Research A, vol. 67, no. 4, pp. 1105–1114, 2003. View at Scopus
  177. K. Uematsu, K. Hattori, Y. Ishimoto et al., “Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly-lactic-glycolic acid (PLGA) scaffold,” Biomaterials, vol. 26, no. 20, pp. 4273–4279, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  178. E. R. Kenawy, G. L. Bowlin, K. Mansfield et al., “Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend,” Journal of Controlled Release, vol. 81, no. 1-2, pp. 57–64, 2002. View at Publisher · View at Google Scholar · View at Scopus
  179. X. M. Mo, C. Y. Xu, M. Kotaki, and S. Ramakrishna, “Electrospun P(LLA-CL) nanofiber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation,” Biomaterials, vol. 25, no. 10, pp. 1883–1890, 2004. View at Publisher · View at Google Scholar · View at Scopus
  180. G. Verreck, I. Chun, J. Rosenblatt et al., “Incorporation of drugs in an amorphous state into electrospun nanofibers composed of a water-insoluble, nonbiodegradable polymer,” Journal of Controlled Release, vol. 92, no. 3, pp. 349–360, 2003. View at Publisher · View at Google Scholar · View at Scopus
  181. M. Singh, C. P. Morris, R. J. Ellis, M. S. Detamore, and C. Berkland, “Microsphere-based seamless scaffolds containing macroscopic gradients of encapsulated factors for tissue engineering,” Tissue Engineering C, vol. 14, no. 4, pp. 299–309, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  182. M. Singh, B. Sandhu, A. Scurto, C. Berkland, and M. S. Detamore, “Microsphere-based scaffolds for cartilage tissue engineering: using subcritical CO2 as a sintering agent,” Acta Biomaterialia, vol. 6, no. 1, pp. 137–143, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  183. D. Stephens, L. Li, D. Robinson et al., “Investigation of the in vitro release of gentamicin from a polyanhydride matrix,” Journal of Controlled Release, vol. 63, no. 3, pp. 305–317, 2000. View at Publisher · View at Google Scholar · View at Scopus
  184. C. Berkland, M. King, A. Cox, K. Kim, and D. W. Pack, “Precise control of PLG microsphere size provides enhanced control of drug release rate,” Journal of Controlled Release, vol. 82, no. 1, pp. 137–147, 2002. View at Publisher · View at Google Scholar · View at Scopus
  185. H. B. Ravivarapu, K. Burton, and P. P. DeLuca, “Polymer and microsphere blending to alter the release of a peptide from PLGA microspheres,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 50, no. 2, pp. 263–270, 2000. View at Publisher · View at Google Scholar · View at Scopus
  186. R. A. Jain, C. T. Rhodes, A. M. Railkar, A. W. Malick, and N. H. Shah, “Controlled delivery of drugs from a novel injectable in situ formed biodegradable PLGA microsphere system,” Journal of Microencapsulation, vol. 17, no. 3, pp. 343–362, 2000. View at Scopus
  187. C. Berkland, K. Kim, and D. W. Pack, “PLG microsphere size controls drug release rate through several competing factors,” Pharmaceutical Research, vol. 20, no. 7, pp. 1055–1062, 2003. View at Publisher · View at Google Scholar · View at Scopus
  188. M. Borden, M. Attawia, Y. Khan, S. F. El-Amin, and C. T. Laurencin, “Tissue-engineered bone formation in vivo using a novel sintered polymeric microsphere matrix,” Journal of Bone and Joint Surgery B, vol. 86, no. 8, pp. 1200–1208, 2004. View at Publisher · View at Google Scholar · View at Scopus
  189. J. Yao, S. Radin, P. S. Leboy P., and P. Ducheyne, “The effect of bioactive glass content on synthesis and bioactivity of composite poly (lactic-co-glycolic acid)/bioactive glass substrate for tissue engineering,” Biomaterials, vol. 26, no. 14, pp. 1935–1943, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  190. A. Jaklenec, E. Wan, M. E. Murray, and E. Mathiowitz, “Novel scaffolds fabricated from protein-loaded microspheres for tissue engineering,” Biomaterials, vol. 29, no. 2, pp. 185–192, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  191. A. Jaklenec, A. Hinckfuss, B. Bilgen, D. M. Ciombor, R. Aaron, and E. Mathiowitz, “Sequential release of bioactive IGF-I and TGF-β1 from PLGA microsphere-based scaffolds,” Biomaterials, vol. 29, no. 10, pp. 1518–1525, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  192. J. L. Brown, L. S. Nair, and C. T. Laurencin, “Solvent/non-solvent sintering: a novel route to create porous microsphere scaffolds for tissue regeneration,” Journal of Biomedical Materials Research B, vol. 86, no. 2, pp. 396–406, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  193. S. P. Nukavarapu, S. G. Kumbar, J. L. Brown et al., “Polyphosphazene/nano-hydroxyapatite composite microsphere scaffolds for bone tissue engineering,” Biomacromolecules, vol. 9, no. 7, pp. 1818–1825, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  194. M. Borden, M. Attawia, and C. T. Laurencin, “The sintered microsphere matrix for bone tissue engineering: in vitro osteoconductivity studies,” Journal of Biomedical Materials Research, vol. 61, no. 3, pp. 421–429, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  195. Y. M. Khan, D. S. Katti, and C. T. Laurencin, “Novel polymer-synthesized ceramic composite-based system for bone repair: an in vitro evaluation,” Journal of Biomedical Materials Research A, vol. 69, no. 4, pp. 728–737, 2004. View at Scopus
  196. K. Rezwan, Q. Z. Chen, J. J. Blaker, and A. R. Boccaccini, “Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering,” Biomaterials, vol. 27, no. 18, pp. 3413–3431, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  197. L. L. Hench, “Bioceramics: from concept to clinic,” American Ceramic Society Bulletin, vol. 72, pp. 93–98, 1993.
  198. R. L. Hentrich Jr., G. A. Graves Jr., H. G. Stein, and P. K. Bajpai, “Evaluation of inert and resorbable ceramics for future clinical orthopedic applications,” Journal of Biomedical Materials Research, vol. 5, no. 1, pp. 25–51, 1971. View at Scopus
  199. J. B. Park and R. S. Lakes, Biomaterials—An Introduction, Plenum Press, New York, NY, USA, 2nd edition, 1992.
  200. J. J. Blaker, J. E. Gough, V. Maquet, I. Notingher, and A. R. Boccaccini, “In vitro evaluation of novel bioactive composites based on Bioglass®-filled polylactide foams for bone tissue engineering scaffolds,” Journal of Biomedical Materials Research A, vol. 67, no. 4, pp. 1401–1411, 2003. View at Scopus
  201. H. W. Kim, E. J. Lee, I. K. Jun, H. E. Kim, and J. C. Knowles, “Degradation and drug release of phosphate glass/polycaprolactone biological composites for hard-tissue regeneration,” Journal of Biomedical Materials Research B, vol. 75, no. 1, pp. 34–41, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  202. C. Du, F. Z. Cui, X. D. Zhu, and K. De Groot, “Three-dimensional nano-HAp/collagen matrix loading with osteogenic cells in organ culture,” Journal of Biomedical Materials Research, vol. 44, no. 4, pp. 407–415, 1999. View at Publisher · View at Google Scholar · View at Scopus
  203. A. Bigi, E. Boanini, S. Panzavolta, N. Roveri, and K. Rubini, “Bonelike apatite growth on hydroxyapatite-gelatin sponges from simulated body fluid,” Journal of Biomedical Materials Research, vol. 59, no. 4, pp. 709–715, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  204. Y. Zhang and M. Zhang, “Synthesis and characterization of macroporous chitosan/calcium phosphate composite scaffolds for tissue engineering,” Journal of Biomedical Materials Research, vol. 55, no. 3, pp. 304–312, 2001. View at Publisher · View at Google Scholar · View at Scopus
  205. S. E. Dahms, H. J. Piechota, R. Dahiya, T. F. Lue, and E. A. Tanagho, “Composition and biomechanical properties of the bladder acellular matrix graft: comparative analysis in rat, pig and human,” British Journal of Urology, vol. 82, no. 3, pp. 411–419, 1998. View at Publisher · View at Google Scholar · View at Scopus
  206. J. J. Yoo, J. Meng, F. Oberpenning, and A. Atala, “Bladder augmentation using allogenic bladder submucosa seeded with cells,” Urology, vol. 51, no. 2, pp. 221–225, 1998. View at Publisher · View at Google Scholar · View at Scopus
  207. F. Chen, J. J. Yoo, and A. Atala, “Acellular collagen matrix as a possible 'off the shelf' biomaterial for urethral repair,” Urology, vol. 54, no. 3, pp. 407–410, 1999. View at Publisher · View at Google Scholar · View at Scopus
  208. G. J. Wilson, D. W. Courtman, P. Klement, J. M. Lee, and H. Yeger, “Acellular matrix: a biomaterials approach for coronary artery bypass and heart valve replacement,” Annals of Thoracic Surgery, vol. 60, supplement 2, pp. S353–S358, 1995. View at Scopus
  209. S. E. Dahms, H. J. Piechota, L. Nunes, R. Dahiya, T. F. Lue, and E. A. Tanagho, “Free ureteral replacement in rats: regeneration of ureteral wall components in the acellular matrix graft,” Urology, vol. 50, no. 5, pp. 818–825, 1997. View at Publisher · View at Google Scholar · View at Scopus
  210. M. Probst, R. Dahiya, S. Carrier, and E. A. Tanagho, “Reproduction of functional smooth muscle tissue and partial bladder replacement,” British Journal of Urology, vol. 79, no. 4, pp. 505–515, 1997. View at Scopus
  211. T. W. Gilbert, T. L. Sellaro, and S. F. Badylak, “Decellularization of tissues and organs,” Biomaterials, vol. 27, no. 19, pp. 3675–3683, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  212. C. Stamm, A. Khosravi, N. Grabow et al., “Biomatrix/polymer composite material for heart valve tissue engineering,” Annals of Thoracic Surgery, vol. 78, no. 6, pp. 2084–2093, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  213. M. Sokolsky-Papkov, K. Agashi, A. Olaye, K. Shakesheff, and A. J. Domb, “Polymer carriers for drug delivery in tissue engineering,” Advanced Drug Delivery Reviews, vol. 59, no. 4-5, pp. 187–206, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  214. B. D. Boyan, T. W. Hummert, D. D. Dean, and Z. Schwartz, “Role of material surfaces in regulating bone and cartilage cell response,” Biomaterials, vol. 17, no. 2, pp. 137–146, 1996. View at Publisher · View at Google Scholar · View at Scopus
  215. K. T. Tran, L. Griffith, and A. Wells, “Extracellular matrix signaling through growth factor receptors during wound healing,” Wound Repair and Regeneration, vol. 12, no. 3, pp. 262–268, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  216. K. S. Midwood, L. V. Williams, and J. E. Schwarzbauer, “Tissue repair and the dynamics of the extracellular matrix,” International Journal of Biochemistry and Cell Biology, vol. 36, no. 6, pp. 1031–1037, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  217. R. N. S. Sodhi, “Application of surface analytical and modification techniques to biomaterial research,” Journal of Electron Spectroscopy and Related Phenomena, vol. 81, no. 3, pp. 269–284, 1996. View at Publisher · View at Google Scholar · View at Scopus
  218. D. M. Brewis and D. Briggs, “Adhesion to polyethylene and polypropylene,” Polymer, vol. 22, no. 1, pp. 7–16, 1981. View at Scopus
  219. D. L. Elbert and J. A. Hubbell, “Surface treatments of polymers for biocompatibility,” Annual Review of Materials Science, vol. 26, no. 1, pp. 365–394, 1996. View at Scopus
  220. C. A. Léon y León, “New perspectives in mercury porosimetry,” Advances in Colloid and Interface Science, vol. 76-77, pp. 341–372, 1998. View at Scopus
  221. A. G. A. Coombes, S. C. Rizzi, M. Williamson, J. E. Barralet, S. Downes, and W. A. Wallace, “Precipitation casting of polycaprolactone for applications in tissue engineering and drug delivery,” Biomaterials, vol. 25, no. 2, pp. 315–325, 2004. View at Publisher · View at Google Scholar · View at Scopus
  222. J. H. Brauker, V. E. Carr-Brendel, L. A. Martinson, J. Crudele, W. D. Johnston, and R. C. Johnson, “Neovascularization of synthetic membranes directed by membrane micro architecture,” Journal of Biomedical Materials Research, vol. 29, pp. 1517–1524, 1995.
  223. J. J. Klawitter and S. F. Hulbert, “Application of porous ceramics for the attachment of load-bearing internal orthopedic applications,” Journal of Biomedical Materials Research A Symposium, vol. 2, pp. 161–168, 1971.
  224. S. Yang, K. F. Leong, Z. Du, and C. K. Chua, “The design of scaffolds for use in tissue engineering—part I: traditional factors,” Tissue Engineering, vol. 7, no. 6, pp. 679–689, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  225. K. Whang, K. E. Healy, D. R. Elenz, et al., “Engineering bone regeneration with bioabsorbable scaffolds with novel microarchitecture,” Tissue Engineering, vol. 5, no. 1, pp. 35–51, 1999. View at Scopus
  226. I. V. Yannas, E. Lee, D. P. Orgill, E. M. Skrabut, and G. F. Murphy, “Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 3, pp. 933–937, 1989. View at Scopus
  227. A. J. Salgado, O. P. Coutinho, and R. L. Reis, “Bone tissue engineering: state of the art and future trends,” Macromolecular Bioscience, vol. 4, no. 8, pp. 743–765, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  228. D. F. Williams, “On the mechanisms of biocompatibility,” Biomaterials, vol. 29, no. 20, pp. 2941–2953, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  229. G. Khang, J. H. Jeon, J. W. Lee, S. C. Cho, and H. B. Lee, “Cell and platelet adhesions on plasma glow discharge-treated poly(lactide-co-glycolide),” Bio-Medical Materials and Engineering, vol. 7, no. 6, pp. 357–368, 1997. View at Scopus
  230. K. D. Colter, M. Shen, and A. T. Bell, “Reduction of progesterone release rate through silicone membranes by plasma polymerization,” Biomaterials Medical Devices and Artificial Organs, vol. 5, no. 1, pp. 13–24, 1977. View at Scopus
  231. M. Sato, M. Ishihara, M. Ishihara et al., “Effects of growth factors on heparin-carrying polystyrene-coated atelocollagen scaffold for articular cartilage tissue engineering,” Journal of Biomedical Materials Research B, vol. 83, no. 1, pp. 181–188, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  232. H. Park, K. Y. Lee, S. J. Lee, K. E. Park, and W. H. Park, “Plasma-treated poly(lactic-co-glycolic acid) nanofibers for tissue engineering,” Macromolecular Research, vol. 15, no. 3, pp. 238–243, 2007. View at Scopus
  233. S. A. Mitchell, M. R. Davidson, and R. H. Bradley, “Improved cellular adhesion to acetone plasma modified polystyrene surfaces,” Journal of Colloid and Interface Science, vol. 281, no. 1, pp. 122–129, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  234. J. C. Middleton and A. J. Tipton, “Synthetic biodegradable polymers as orthopedic devices,” Biomaterials, vol. 21, no. 23, pp. 2335–2346, 2000. View at Scopus
  235. M. A. Woodruff and D. W. Hutmacher, “The return of a forgotten polymer—polycaprolactone in the 21st century,” Progress in Polymer Science, vol. 35, no. 10, pp. 1217–1256, 2010. View at Publisher · View at Google Scholar · View at Scopus
  236. W. P. Ye, F. S. Du, W. H. Jin, J. Y. Yang, and Y. Xu, “In vitro degradation of poly(caprolactone), poly(lactide) and their block copolymers: influence of composition, temperature and morphology,” Reactive and Functional Polymers, vol. 32, no. 2, pp. 161–168, 1997. View at Scopus
  237. K. S. Anseth, C. N. Bowman, and L. Brannon-Peppas, “Mechanical properties of hydrogels and their experimental determination,” Biomaterials, vol. 17, no. 17, pp. 1647–1657, 1996. View at Publisher · View at Google Scholar · View at Scopus
  238. P. V. Moghe, F. Berthiaume, R. M. Ezzell, M. Toner, R. G. Tompkins, and M. L. Yarmush, “Culture matrix configuration and composition in the maintenance of hepatocyte polarity and function,” Biomaterials, vol. 17, no. 3, pp. 373–385, 1996. View at Publisher · View at Google Scholar · View at Scopus
  239. P. L. Ryan, R. A. Foty, J. Kohn, and M. S. Steinberg, “Tissue spreading on implantable substrates is a competitive outcome of cell-cell vs. cell-substratum adhesivity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 8, pp. 4323–4327, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  240. D. E. Ingber, “Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology,” Circulation Research, vol. 91, no. 10, pp. 877–887, 2002. View at Publisher · View at Google Scholar · View at Scopus