About this Journal Submit a Manuscript Table of Contents
International Journal of Polymer Science
Volume 2011 (2011), Article ID 503940, 11 pages
http://dx.doi.org/10.1155/2011/503940
Research Article

Role of Polysaccharides on Mechanical and Adhesion Properties of Flax Fibres in Flax/PLA Biocomposite

LIMATB (Laboratoire d'Ingénierie des MATériaux de Bretagne), Centre de Recherche, Université de Bretagne Sud (UBS-Ueb), Rue de Saint Maudé, 56321 Lorient Cedex, France

Received 10 January 2011; Accepted 2 March 2011

Academic Editor: Susheel Kalia

Copyright © 2011 Gijo Raj et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Bodros, I. Pillin, N. Montrelay, and C. Baley, “Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications?” Composites Science and Technology, vol. 67, no. 3-4, pp. 462–470, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. D. Plackett, T. L. Andersen, W. B. Pedersen, and L. Nielsen, “Biodegradable composites based on L-polylactide and jute fibres,” Composites Science and Technology, vol. 63, no. 9, pp. 1287–1296, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Oksman, M. Skrifvars, and J. F. Selin, “Natural fibres as reinforcement in polylactic acid (PLA) composites,” Composites Science and Technology, vol. 63, no. 9, pp. 1317–1324, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Baley, “Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase,” Composites A, vol. 33, no. 7, pp. 939–948, 2002. View at Publisher · View at Google Scholar
  5. C. Morvan, C. Andème-Onzighi, R. Girault, D. S. Himmelsbach, A. Driouich, and D. E. Akin, “Building flax fibres: more than one brick in the walls,” Plant Physiology and Biochemistry, vol. 41, no. 11-12, pp. 935–944, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. H. L. Bos, J. Müssig, and M. J. A. van den Oever, “Mechanical properties of short-flax-fibre reinforced compounds,” Composites A, vol. 37, no. 10, pp. 1591–1604, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Charlet, J. P. Jernot, M. Gomina, J. Bréard, C. Morvan, and C. Baley, “Influence of an Agatha flax fibre location in a stem on its mechanical, chemical and morphological properties,” Composites Science and Technology, vol. 69, no. 9, pp. 1399–1403, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Šturcová, G. R. Davies, and S. J. Eichhorn, “Elastic modulus and stress-transfer properties of tunicate cellulose whiskers,” Biomacromolecules, vol. 6, no. 2, pp. 1055–1061, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. A. K. Mohanty, M. Misra, and L. T. Drzal, “Surface modifications of natural fibers and performance of the resulting biocomposites: an overview,” Composite Interfaces, vol. 8, no. 5, pp. 313–343, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Kalia, B. S. Kaith, and I. Kaur, “Pretreatments of natural fibers and their application as reinforcing material in polymer composites-a review,” Polymer Engineering and Science, vol. 49, no. 7, pp. 1253–1272, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Arbelaiz, G. Cantero, B. Fernández, I. Mondragon, P. Gañán, and J. M. Kenny, “Flax fiber surface modifications: effects on fiber physico mechanical and flax/polypropylene interface properties,” Polymer Composites, vol. 26, no. 3, pp. 324–332, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. I. Van de Weyenberg, T. Chi Truong, B. Vangrimde, and I. Verpoest, “Improving the properties of UD flax fibre reinforced composites by applying an alkaline fibre treatment,” Composites A, vol. 37, no. 9, pp. 1368–1376, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Gassan and A. K. Bledzki, “Alkali treatment of jute fibers: relationship between structure and mechanical properties,” Journal of Applied Polymer Science, vol. 71, no. 4, pp. 623–629, 1999. View at Scopus
  14. L. Y. Mwaikambo and M. P. Ansell, “Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization,” Journal of Applied Polymer Science, vol. 84, no. 12, pp. 2222–2234, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. H. S. S. Sharma, L. Whiteside, and K. Kernaghan, “Enzymatic treatment of flax fibre at the roving stage for production of wet-spun yarn,” Enzyme and Microbial Technology, vol. 37, no. 4, pp. 386–394, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. D. E. Akin, J. A. Foulk, R. B. Dodd, and D. D. McAlister, “Enzyme-retting of flax and characterization of processed fibers,” Journal of Biotechnology, vol. 89, no. 2-3, pp. 193–203, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. P. A. Penttilä, A. Várnai, K. Leppänen et al., “Changes in submicrometer structure of enzymatically hydrolyzed microcrystalline cellulose,” Biomacromolecules, vol. 11, no. 4, pp. 1111–1117, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. M. Z. Rong, M. Q. Zhang, Y. Liu, G. C. Yang, and H. M. Zeng, “The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites,” Composites Science and Technology, vol. 61, no. 10, pp. 1437–1447, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Marais, F. Gouanvé, A. Bonnesoeur et al., “Unsaturated polyester composites reinforced with flax fibers: effect of cold plasma and autoclave treatments on mechanical and permeation properties,” Composites A, vol. 36, no. 7, pp. 975–986, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Jähn, M. W. Schröder, M. Füting, K. Schenzel, and W. Diepenbrock, “Characterization of alkali treated flax fibres by means of FT Raman spectroscopy and environmental scanning electron microscopy,” Spectrochimica Acta A, vol. 58, no. 10, pp. 2271–2279, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Baley, F. Busnel, Y. Grohens, and O. Sire, “Influence of chemical treatments on surface properties and adhesion of flax fibre-polyester resin,” Composites A, vol. 37, no. 10, pp. 1626–1637, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Pietak, S. Korte, E. Tan, A. Downard, and M. P. Staiger, “Atomic force microscopy characterization of the surface wettability of natural fibres,” Applied Surface Science, vol. 253, no. 7, pp. 3627–3635, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. E. Balnois, F. Busnel, C. Baley, and Y. Grohens, “An AFM study of the effect of chemical treatments on the surface microstructure and adhesion properties of flax fibres,” Composite Interfaces, vol. 14, no. 7–10, pp. 715–731, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Joseph, L. H. C. Mattoso, R. D. Toledo, et al., “Natural fiber reinforced thermoplastic composites,” in Natural Polymers and Agrofibers Composites, E. Frollini, A. L. Leao, and L. H. C. Mattoso, Eds., pp. 159–202, Embrapa, USP/ UNESP, San Carlos, Brazil, 2000.
  25. C. H. Chen, C. Y. Chen, Y. W. Lo, C. F. Mao, and W. T. Liao, “Characterization of alkali-treated jute fibers for physical and mechanical properties,” Journal of Applied Polymer Science, vol. 80, no. 7, pp. 1013–1020, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. J. T. Kim and A. N. Netravali, “Mercerization of sisal fibers: effect of tension on mechanical properties of sisal fiber and fiber-reinforced composites,” Composites A, vol. 41, no. 9, pp. 1245–1252, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Charlet, C. Baley, C. Morvan, J. P. Jernot, M. Gomina, and J. Bréard, “Characteristics of Hermès flax fibres as a function of their location in the stem and properties of the derived unidirectional composites,” Composites A, vol. 38, no. 8, pp. 1912–1921, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. P. Fratzl, I. Burgert, and H. S. Gupta, “On the role of interface polymers for the mechanics of natural polymeric composites,” Physical Chemistry Chemical Physics, vol. 6, no. 24, pp. 5575–5579, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Keckes, I. Burgert, K. Frühmann et al., “Cell-wall recovery after irreversible deformation of wood,” Nature Materials, vol. 2, no. 12, pp. 810–814, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. C. M. Altaner and M. C. Jarvis, “Modelling polymer interactions of the 'molecular Velcro' type in wood under mechanical stress,” Journal of Theoretical Biology, vol. 253, no. 3, pp. 434–445, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. E. Zini, M. Scandola, and P. Getenholm, “Heterogeneous acylation of flax fibers. Reaction kinetics and surface properties,” Biomacromolecules, vol. 4, no. 3, pp. 821–827, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. S. Borysiak and J. Garbarczyk, “Applying the WAXS method to estimate the supermolecular structure of cellulose fibres after mercerisation,” Fibres and Textiles in Eastern Europe, vol. 11, no. 5, pp. 104–106, 2003.
  33. C. Baley, “Influence of kink bands on the tensile strength of flax fibers,” Journal of Materials Science, vol. 39, no. 1, pp. 331–334, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Straub, M. Slivka, and P. Schwartz, “A study of the effects of time and temperature on the fiber/matrix interface strength using the microbond test,” Composites Science and Technology, vol. 57, no. 8, pp. 991–994, 1997. View at Scopus
  35. A. Kelly and W. R. Tyson, “Tensile properties of fibre-reinforced metals: copper/tungsten and copper/molybdenum,” Journal of the Mechanics and Physics of Solids, vol. 13, no. 6, pp. 329–338, 1965. View at Scopus
  36. M. Pommet, J. Juntaro, J. Y. Y. Heng et al., “Surface modification of natural fibers using bacteria: depositing bacterial cellulose onto natural fibers to create hierarchical fiber reinforced nanocomposites,” Biomacromolecules, vol. 9, no. 6, pp. 1643–1651, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. G. Raj, E. Balnois, C. Baley, and Y. Grohens, “Probing cellulose/polylactic acid interactions in model biocomposite by colloidal force microscopy,” Colloids and Surfaces A, vol. 352, no. 1-3, pp. 47–55, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. G. Raj, E. Balnoiso, C. Baley, and Y. Grohens, “Adhesion force mapping of raw and treated flax fibres using afm force-volume,” Journal of Scanning Probe Microscopy, vol. 4, no. 2, pp. 66–72, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. H. J. Butt, B. Cappella, and M. Kappl, “Force measurements with the atomic force microscope: technique, interpretation and applications,” Surface Science Reports, vol. 59, no. 1–6, pp. 1–152, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. D. L. Sedin and K. L. Rowlen, “Adhesion forces measured by atomic force microscopy in humid air,” Analytical Chemistry, vol. 72, no. 10, pp. 2183–2189, 2000. View at Publisher · View at Google Scholar · View at Scopus
  41. R. Jones, H. M. Pollock, J. A. S. Cleaver, and C. S. Hodges, “Adhesion forces between glass and silicon surfaces in air studied by AFM: effects of relative humidity, particle size, roughness, and surface treatment,” Langmuir, vol. 18, no. 21, pp. 8045–8055, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. R. Sun, J. M. Fang, and J. Tomkinson, “Characterization and esterification of hemicelluloses from rye straw,” Journal of Agricultural and Food Chemistry, vol. 48, no. 4, pp. 1247–1252, 2000. View at Publisher · View at Google Scholar · View at Scopus
  43. O. Biermann, E. Hädicke, S. Koltzenburg, and F. Müller-Plathe, “Hydrophilicity and lipophilicity of cellulose crystal surfaces,” Angewandte Chemie—International Edition, vol. 40, no. 20, pp. 3822–3825, 2001. View at Scopus
  44. A. Zykwinska, J. F. Thibault, and M. C. Ralet, “Modelling of xyloglucan, pectins and pectic side chains binding onto cellulose microfibrils,” Carbohydrate Polymers, vol. 74, no. 1, pp. 23–30, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. A. J. Michell and H. G. Higgins, “The absence of free hydroxyl groups in cellulose,” Cellulose, vol. 6, no. 1, pp. 89–91, 1999. View at Scopus