About this Journal Submit a Manuscript Table of Contents
International Journal of Polymer Science
Volume 2011 (2011), Article ID 569871, 14 pages
http://dx.doi.org/10.1155/2011/569871
Research Article

Natural Fibre-Reinforced Biofoams

Centre des Matériaux de Grande Diffusion, Ecole des Mines d'Alès, 6 avenue de Clavières, 30319 Alès, France

Received 8 April 2011; Accepted 24 June 2011

Academic Editor: James Njuguna

Copyright © 2011 Anne Bergeret and Jean Charles Benezet. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Soykeabkaew, P. Supaphol, and R. Rujiravanit, “Preparation and characterization of jute-and flax-reinforced starch-based composite foams,” Carbohydrate Polymers, vol. 58, no. 1, pp. 53–63, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Wollerdorfer and H. Bader, “Influence of natural fibres on the mechanical properties of biodegradable polymers,” Industrial Crops and Products, vol. 8, no. 2, pp. 105–112, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. M. N. Angles and A. Dufresne, “Plasticized/ tunicin whiskers nanocomposite materials. 2. Mechanical properties,” Macromolecules, vol. 34, no. 9, pp. 2921–2931, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Averous, C. Fringant, and L. Moro, “Plasticized starch-cellulose interactions in polysaccharide composites,” Polymer, vol. 42, no. 15, pp. 6571–6578, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. A. J. F. de Carvalho, A. A. S. Curvelo, and J. A. M. Agnelli, “Wood pulp reinforced thermoplastic starch composites,” International Journal of Polymeric Materials, vol. 51, no. 7, pp. 647–660, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Dufresne, D. Dupeyre, and M. R. Vignon, “Cellulose microfibrils from potato tuber cells: processing and characterization of starch-cellulose microfibril composites,” Journal of Applied Polymer Science, vol. 76, no. 14, pp. 2080–2092, 2000. View at Scopus
  7. T. Nishino, K. Hirao, M. Kotera, K. Nakamae, and H. Inagaki, “Kenaf reinforced biodegradable composite,” Composites Science and Technology, vol. 63, no. 9, pp. 1281–1286, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Plackett, A. T. Logstrup, P. W. Batsberg, and L. Nielsen, “Biodegradable composites based on L-polylactide and jute fibres,” Composites Science and Technology, vol. 63, no. 9, pp. 1287–1296, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Oksman, M. Skrifvars, and J. F. Selin, “Natural fibres as reinforcement in polylactic acid (PLA) composites,” Composites Science and Technology, vol. 63, no. 9, pp. 1317–1324, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. H. S. Yang, H. J. Kim, H. J. Park, B. J. Lee, and T. S. Hwang, “Effect of compatibilizing agents on rice-husk flour reinforced polypropylene composites,” Composite Structures, vol. 77, no. 1, pp. 45–55, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. M. N. Belgacem, P. Bataille, and S. Sapieha, “Effect of corona modification on the mechanical properties of polypropylene/cellulose composites,” Journal of Applied Polymer Science, vol. 53, no. 4, pp. 379–385, 1994. View at Publisher · View at Google Scholar · View at Scopus
  12. J. C. Benezet, R. B. Christensen, H. Viana, A. Bergeret, L. Ferry, and S. Borros, “Biodegradable composites from starch foam and surface plasma treated natural fiber,” in Recent Advances in Research on Biodegradable Polymers and Sustainable Composites, vol. 1, Nova Science Publishers, New York, NY, USA, 2008.
  13. N. E. Zafeiropoulos, C. A. Baillie, and J. M. Hodgkinson, “Engineering and characterisation of the interface in flax fibre/polypropylene composite materials. Part II. The effect of surface treatments on the interface,” Composites Part A, vol. 33, no. 9, pp. 1185–1190, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. A. K. Bledzki and J. Gassan, “Composites reinforced with cellulose based fibres,” Progress in Polymer Science, vol. 24, no. 2, pp. 221–274, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Siqueira, J. Bras, and A. Dufresne, “New process of chemical grafting of cellulose nanoparticles with a long chain isocyanate,” Langmuir, vol. 26, no. 1, pp. 402–411, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. G. D. Valle, Y. Boché, P. Colonna, and B. Vergnes, “The extrusion behaviour of potato starch,” Carbohydrate Polymers, vol. 28, no. 3, pp. 255–264, 1995. View at Scopus
  17. A. Stanojlovic-Davidovic, Matériaux biodegradables à base d’amidon expanse renforcé de fibres naturelles. Application à l’emballage alimentaire, Ph.D. thesis, Université du Sud Toulon-Var, 2006.
  18. J. W. Lawton, R. L. Shogren, and K. F. Tiefenbacher, “Aspen fiber addition improves the mechanical properties of baked cornstarch foams,” Industrial Crops and Products, vol. 19, no. 1, pp. 41–48, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. R. L. Shogren, J. W. Lawton, and K. F. Tiefenbacher, “Baked starch foams: Starch modifications and additives improve process parameters, structure and properties,” Industrial Crops and Products, vol. 16, no. 1, pp. 69–79, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. Z. Liu, C. S. L. Chuah, and M. G. Scanlon, “Compressive elastic modulus and its relationship to the structure of a hydrated starch foam,” Acta Materialia, vol. 51, no. 2, pp. 365–371, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Averous, “Biodegradable multiphase systems based on plasticized starch: A review,” Journal of Macromolecular Science. Polymer Reviews, vol. C44, no. 3, pp. 231–274, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. D. Garlotta, “A literature review of poly(lactic acid),” Journal of Polymers and the Environment, vol. 9, no. 2, pp. 63–84, 2002. View at Scopus
  23. R. Auras, B. Harte, and S. Selke, “An overview of polylactides as packaging materials,” Macromolecular Bioscience, vol. 4, no. 9, pp. 835–864, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Mehta, V. Kumar, H. Bhunia, and S. N. Upadhyay, “Synthesis of poly(lactic acid): a review,” Journal of Macromolecular Science. Polymer Reviews, vol. C45, no. 4, pp. 325–349, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Sodergard and M. Stolt, “Properties of lactic acid based polymers and their correlation with composition,” Progress in Polymer Science, vol. 27, no. 6, pp. 1123–1163, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Shen, J. Haufe, and M. K. Patel, “Product overview and market projection of emerging bio-based plastics,” Utrecht University 2009, www.epnoe.eu.
  27. D. Klempner and V. Sendijarevic, Polymeric Foams and Foam Technology, Hanser Garner, Munich, Germany, 1991.
  28. M. Parikh, R. A. Gross, and S. P. McCarthy, “The influence of injection molding conditions on biodegradable polymers,” Journal of Injection Molding Technology, vol. 2, no. 1, pp. 30–36, 1998.
  29. C. H. Lee, K. J. Lee, H. G. Jeong, and S. W. Kim, “Growth of gas bubbles in the foam extrusion process,” Advances in Polymer Technology, vol. 19, no. 2, pp. 97–112, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Sauceau, C. Nikitine, E. Rodier, and J. Fages, “Effect of supercritical carbon dioxide on polystyrene extrusion,” Journal of Supercritical Fluids, vol. 43, no. 2, pp. 367–373, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Greco, A. Maffezzoli, and O. Manni, “Development of polymeric foams from recycled polyethylene and recycled gypsum,” Polymer Degradation and Stability, vol. 90, no. 2, pp. 256–263, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. S. T. Lee, L. Kareko, and J. Jun, “Study of thermoplastic PLA foam extrusion,” Journal of Cellular Plastics, vol. 44, no. 4, pp. 293–305, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. S. S. Ray and M. Okamoto, “Biodegradable polylactide and its nanocomposites: opening a new dimension for plastics and composites,” Macromolecular Rapid Communications, vol. 24, no. 14, pp. 815–840, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. Ema, M. Ikeya, and M. Okamoto, “Foam processing and cellular structure of polylactide-based nanocomposites,” Polymer, vol. 47, no. 15, pp. 5350–5359, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. E. Kabir, M. C. Saha, and S. Jeelani, “Tensile and fracture behavior of polymer foams,” Materials Science and Engineering A, vol. 429, no. 1-2, pp. 225–235, 2006. View at Publisher · View at Google Scholar
  36. H. R. Lin, “The structure and property relationships of commercial foamed plastics,” Polymer Testing, vol. 16, no. 5, pp. 429–443, 1997. View at Scopus
  37. M. S. Huda, L. T. Drzal, A. K. Mohanty, and M. Misra, “Effect of fiber surface-treatments on the properties of laminated biocomposites from poly(lactic acid) (PLA) and kenaf fibers,” Composites Science and Technology, vol. 68, no. 2, pp. 424–432, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. L. M. Matuana and O. Faruk, “Solid state microcellular foamed PLA and PLA/wood flour composites: morphology and property characterization,” in Proceedings of the 4th International Symposium on wood polymer composites, Bordeaux, France, 2009.
  39. Q. Li and L. M. Matuana, “Foam extrusion of high density polyethylene/wood-flour composites using chemical foaming agents,” Journal of Applied Polymer Science, vol. 88, no. 14, pp. 3139–3150, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. F. Mengeloglu and M. M. Laurent, “Foaming of rigid PVC/wood-flour composites through a continuous extrusion process,” Journal of Vinyl and Additive Technology, vol. 7, no. 3, pp. 142–148, 2001. View at Scopus
  41. L. M. Matuana and M. Fatih, “Manufacture of rigid PVC/wood-flour composite foams using moisture contained in wood as foaming agent,” Journal of Vinyl and Additive Technology, vol. 8, no. 4, pp. 264–270, 2002. View at Scopus
  42. S. Pilla, S. G. Kim, G. K. Auer, S. Gong, and C. B. Park, “Microcellular extrusion-foaming of polylactide with chain-extender,” Polymer Engineering and Science, vol. 49, no. 8, pp. 1653–1660, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. A. P. Mathew, K. Oksman, and M. Sain, “Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC),” Journal of Applied Polymer Science, vol. 97, no. 5, pp. 2014–2025, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. R. Masirek, Z. Kulinski, D. Chionna, E. Piorkowska, and M. Pracella, “Composites of poly(L-lactide) with hemp fibers: morphology and thermal and mechanical properties,” Journal of Applied Polymer Science, vol. 105, no. 1, pp. 255–268, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. M. S. Huda, L. T. Drzal, A. K. Mohanty, and M. Misra, “Chopped glass and recycled newspaper as reinforcement fibers in injection molded poly(lactic acid) (PLA) composites: a comparative study,” Composites Science and Technology, vol. 66, no. 11-12, pp. 1813–1824, 2006. View at Publisher · View at Google Scholar · View at Scopus