About this Journal Submit a Manuscript Table of Contents
International Journal of Polymer Science
Volume 2011 (2011), Article ID 651549, 8 pages
http://dx.doi.org/10.1155/2011/651549
Research Article

Manipulation of Polyhydroxybutyrate Properties through Blending with Ethyl-Cellulose for a Composite Biomaterial

1Bio/Polymer Research Group, Centre for Advanced Macromolecular Design, School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, NSW 2052, Australia
2Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia

Received 6 May 2011; Accepted 30 May 2011

Academic Editor: Shanfeng Wang

Copyright © 2011 Rodman T. H. Chan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. M. Kapritchkoff, A. P. Viotti, R. C. P. Alli et al., “Enzymatic recovery and purification of polyhydroxybutyrate produced by Ralstonia eutropha,” Journal of Biotechnology, vol. 122, no. 4, pp. 453–462, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. T. Freier, “Biopolyesters in tissue engineering applications,” Advances in Polymer Science, vol. 203, no. 1, pp. 1–61, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. C. A. Woolnough, T. Charlton, L. H. Yee, M. Sarris, and L. J. R. Foster, “Surface changes in polyhydroxyalkanoate films during biodegradation and biofouling,” Polymer International, vol. 57, no. 9, pp. 1042–1051, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. L. J. Chen and M. Wang, “Production and evaluation of biodegradable composites based on PHB-PHV copolymer,” Biomaterials, vol. 23, no. 13, pp. 2631–2639, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. L. J. R. Foster and B. J. Tighe, “Enzymatic assay of hydroxybutyric acid monomer formation in poly(β-hydroxybutyrate) degradation studies,” Biomaterials, vol. 16, no. 4, pp. 341–343, 1995. View at Publisher · View at Google Scholar · View at Scopus
  6. L. J. R. Foster and B. J. Tighe, “In vitro hydrolytic degradation of centrifugally spun polyhydroxybutyrate-pectin composite fibres,” Polymer International, vol. 58, no. 12, pp. 1442–1451, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Philip, T. Keshavarz, and I. Roy, “Polyhydroxyalkanoates: biodegradable polymers with a range of applications,” Journal of Chemical Technology and Biotechnology, vol. 82, no. 3, pp. 233–247, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. Z. W. Dai, X. H. Zou, and G. Q. Chen, “Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) as an injectable implant system for prevention of post-surgical tissue adhesion,” Biomaterials, vol. 30, no. 17, pp. 3075–3083, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. J. W. You, H. J. Chiu, and T. M. Don, “Spherulitic morphology and crystallization kinetics of melt-miscible blends of poly(3-hydroxybutyrate) with low molecular weight poly(ethylene oxide),” Polymer, vol. 44, no. 15, pp. 4355–4362, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Zhao, Y. Deng, J. C. Chen, and G. Q. Chen, “Polyhydroxyalkanoate (PHA) scaffolds with good mechanical properties and biocompatibility,” Biomaterials, vol. 24, no. 6, pp. 1041–1045, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Chen, C. H. Yu, Y. C. Cheng, P. H. F. Yu, and M. K. Cheung, “Biodegradable nanoparticles of amphiphilic triblock copolymers based on poly(3-hydroxybutyrate) and poly(ethylene glycol) as drug carriers,” Biomaterials, vol. 27, no. 27, pp. 4804–4814, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. M. M. Crowley, B. Schroeder, A. Fredersdorf et al., “Physicochemical properties and mechanism of drug release from ethyl cellulose matrix tablets prepared by direct compression and hot-melt extrusion,” International Journal of Pharmaceutics, vol. 269, no. 2, pp. 509–522, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Dong, Q. Xu, Y. Li, S. Mo, S. Cai, and L. Liu, “The synthesis of biodegradable graft copolymer cellulose-graft-poly(l-lactide) and the study of its controlled drug release,” Colloids and Surfaces B: Biointerfaces, vol. 66, no. 1, pp. 26–33, 2008. View at Publisher · View at Google Scholar · View at PubMed
  14. J. Chen, S. Jo, and K. Park, “Polysaccharide hydrogels for protein drug delivery,” Carbohydrate Polymers, vol. 28, no. 1, pp. 69–76, 1995.
  15. D. S. Rosa, N. T. Lotto, D. R. Lopes, and C. G. F. Guedes, “The use of roughness for evaluating the biodegradation of poly-β-(hydroxybutyrate) and poly-β-(hydroxybutyrate-co-β-valerate),” Polymer Testing, vol. 23, no. 1, pp. 3–8, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Kumagai, Y. Kanesawa, and Y. Doi, “Enzymatic degradation of microbial poly(3-hydroxybutyrate) films,” Makromolekular Chemie, vol. 193, no. 1, pp. 53–57, 1992.
  17. X. J. Loh, K. K. Tan, X. Li, and J. Li, “The in vitro hydrolysis of poly(ester urethane)s consisting of poly[(R)-3-hydroxybutyrate] and poly(ethylene glycol),” Biomaterials, vol. 27, no. 9, pp. 1841–1850, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. L. Zhang, X. Deng, and Z. Huang, “Miscibility, thermal behaviour and morphological structure of poly(3-hydroxybutyrate) and ethyl cellulose binary blends,” Polymer, vol. 38, no. 21, pp. 5379–5387, 1997. View at Scopus
  19. P. J. Barham, A. Keller, E. L. Otun, and P. A. Holmes, “Crystallization and morphology of a bacterial thermoplastic: poly-3-hydroxybutyrate,” Journal of Materials Science, vol. 19, no. 9, pp. 2781–2794, 1984. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Marçal, N. S. Wanandy, V. Sanguanchaipaiwong et al., “BioPEGylation of polyhydroxyalkanoates: influence on properties and satellite-stem cell cycle,” Biomacromolecules, vol. 9, no. 10, pp. 2719–2726, 2008. View at Publisher · View at Google Scholar · View at PubMed
  21. R. S. Chung, A. Woodhouse, S. Fung et al., “Olfactory ensheathing cells promote neurite sprouting of injured axons in vitro by direct cellular contact and secretion of soluble factors,” Cellular and Molecular Life Sciences, vol. 61, no. 10, pp. 1238–1245, 2004. View at Publisher · View at Google Scholar · View at PubMed
  22. C. Vogel, E. Wessel, and H. W. Siesler, “FT-IR imaging spectroscopy of phase separation in blends of poly(3-hydroxybutyrate) with poly(L-lactic acid) and poly(ε-caprolactone),” Biomacromolecules, vol. 9, no. 2, pp. 523–527, 2008. View at Publisher · View at Google Scholar · View at PubMed
  23. T. Furukawa, H. Sato, R. Murakami et al., “Structure, dispersibility, and crystallinity of poly(hydroxybutyrate)/ poly(L-lactic acid) blends studied by FT-IR microspectroscopy and differential scanning calorimetry,” Macromolecules, vol. 38, no. 15, pp. 6445–6454, 2005. View at Publisher · View at Google Scholar
  24. L. J. R. Foster, V. Sanguanchaipaiwong, C. L. Gabelish, J. Hook, and M. Stenzel, “A natural-synthetic hybrid copolymer of polyhydroxyoctanoate-diethylene glycol: biosynthesis and properties,” Polymer, vol. 46, no. 17, pp. 6587–6594, 2005. View at Publisher · View at Google Scholar
  25. B. L. Hurrell and R. E. Cameron, “A wide-angle X-ray scattering study of the ageing of poly(hydroxybutyrate),” Journal of Materials Science, vol. 33, no. 7, pp. 1709–1713, 1998.
  26. T. Wang, G. Cheng, S. Ma, Z. Cai, and L. Zhang, “Crystallization behavior, mechanical properties, and environmental biodegradability of poly(β-hydroxybutyrate)/cellulose acetate butyrate blends,” Journal of Applied Polymer Science, vol. 89, no. 8, pp. 2116–2122, 2003. View at Publisher · View at Google Scholar
  27. M. Scandola, “Polymer blends based on bacterial poly(3-hydroxybutyrate),” Canadian Journal of Microbiology, vol. 41, supplement 1, pp. 310–315, 1995.
  28. C. J. Garvey, R. A. Russell, V. M. Garamus, F. Boue, L. J. R. Foster, and P. J. Holden, Small Angle Neutron Scattering Study of the Interface between Ethylcellulose and Polyhydroxyalkanoate Blends during Annealing, Abstract, SAS2009, ANSTO, Oxford, UK, 2009.
  29. I. I. Muhamad, L. K. Joon, and M. Noor, “Comparing the degradation of poly-β-(hydroxybutyrate), 39-46 poly-β-(hydroxybutyrate-co-β-valerate)(PHBV) and PHBV/cellulose triacetate blend,” Malaysian Polymer Journal, vol. 1, no. 1, pp. 39–46, 2006.
  30. Z. Kai, D. Ying, and C. Guo-Qiang, “Effects of surface morphology on the biocompatibility of polyhydroxyalkanoates,” Biochemical Engineering Journal, vol. 16, no. 2, pp. 115–123, 2003. View at Publisher · View at Google Scholar
  31. L. J. R. Foster, “Biosynthesis, properties and potential of natural-synthetic hybrids of polyhydroxyalkanoates and polyethylene glycols,” Applied Microbiology and Biotechnology, vol. 75, no. 6, pp. 1241–1247, 2007. View at Publisher · View at Google Scholar · View at PubMed
  32. B. Hazer, “Amphiphilic poly(3-hydroxyalkanoate)s: potential candidates for medical applications,” Energy and Power Engineering, vol. 2, no. 1, pp. 31–38, 2010.