About this Journal Submit a Manuscript Table of Contents
International Journal of Polymer Science
Volume 2011 (2011), Article ID 731708, 7 pages
http://dx.doi.org/10.1155/2011/731708
Research Article

Three-Phase Characterization of Uniaxially Stretched Linear Low-Density Polyethylene

Department of Textiles, Ghent University, Technologiepark 907, 9052 Zwijnaarde, Belgium

Received 31 March 2011; Revised 12 July 2011; Accepted 20 August 2011

Academic Editor: Haojun Liang

Copyright © 2011 Blerina Kolgjini et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. C. Mcfaddin, K. E. Russell, G. Wu, and R. D. Heyding, “Characterization of polyethylenes by x-ray diffraction and 13C-NMR: temperature studies and the nature of the amorphous halo,” Journal of Polymer Science, Part B, vol. 31, no. 2, pp. 175–183, 1993. View at Publisher · View at Google Scholar · View at Scopus
  2. A. G. Simanke, R. G. Alamo, G. B. Galland, and R. S. Mauler, “Wide-angle X-ray scattering of random metallocene-ethylene copolymers with different types and concentration of comonomer,” Macromolecules, vol. 34, no. 20, pp. 6959–6971, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Sajkiewicz, T. Hashimoto, K. Saijo, and A. Gradys, “Intermediate phase in poly(ethylene) as elucidated by the WAXS. Analysis of crystallization kinetics,” Polymer, vol. 46, no. 2, pp. 513–521, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. G. R. Strobl and W. Hagedorn, “Raman spectroscopic method for determining the crystallinity of polyethylene,” Journal of Polymer Science, Polymer Physics Edition, vol. 16, no. 7, pp. 1181–1193, 1978.
  5. P. J. In 't Veld, M. Hütter, and G. C. Rutledge, “Temperature-dependent thermal and elastic properties of the interlamellar phase of semicrystalline polyethylene by molecular simulation,” Macromolecules, vol. 39, no. 1, pp. 439–447, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Nikolov, “Multi-scale constitutive modeling of the small deformations of semi-crystalline polymers,” Journal of the Mechanics and Physics of Solids, vol. 50, no. 11, pp. 2275–2302, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. Z. Špitalský and T. Bleha, “Elastic moduli of highly stretched tie molecules in solid polyethylene,” Polymer, vol. 44, no. 5, pp. 1603–1611, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Nikolov and I. Doghri, “A micro/macro constitutive model for the small-deformation behavior of polyethylene,” Polymer, vol. 41, no. 5, pp. 1883–1891, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. O. Gueguen, S. Ahzi, A. Makradi, and S. Belouettar, “A new three-phase model to estimate the effective elastic properties of semi-crystalline polymers: application to PET,” Mechanics of Materials, vol. 42, no. 1, pp. 1–10, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. X. Guan and R. Pitchumani, “A micromechanical model for the elastic properties of semicrystalline thermoplastic polymers,” Polymer Engineering and Science, vol. 44, no. 3, pp. 433–451, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. O. K. Muratoglu, A. S. Argon, R. E. Cohen, and M. Weinberg, “Toughening mechanism of rubber-modified polyamides,” Polymer, vol. 36, no. 5, pp. 921–930, 1995. View at Scopus
  12. G. Elsner, J. Kempf, J. W. Bartha, and H. H. Wagner, “Anisotropy of thermal expansion of thin polyimide films,” Thin Solid Films, vol. 185, no. 1, pp. 189–197, 1990. View at Scopus
  13. Z. Bartczak, A. S. Argon, R. E. Cohen, and T. Kowalewski, “The morphology and orientation of polyethylene in films of sub-micron thickness crystallized in contact with calcite and rubber substrates,” Polymer, vol. 40, no. 9, pp. 2367–2380, 1999. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Glotin and L. Mandelkern, “A Raman spectroscopic study of the morphological structure of the polyethylenes,” Colloid & Polymer Science, vol. 260, no. 2, pp. 182–192, 1982. View at Publisher · View at Google Scholar · View at Scopus
  15. J. M. Lagaron, N. M. Dixon, W. Reed, J. M. Pastor, and B. J. Kip, “Morphological characterisation of the crystalline structure of cold- drawn HDPE used as a model material for the environmental stress cracking (ESC) phenomenon,” Polymer, vol. 40, no. 10, pp. 2569–2586, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. W. Lin, M. Cossar, V. Dang, and J. Teh, “The application of Raman spectroscopy to three-phase characterization of polyethylene crystallinity,” Polymer Testing, vol. 26, no. 6, pp. 814–821, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Mandelkern, “The relation between structure and properties of crystalline polymers,” Polymer Journal, vol. 17, no. 1, pp. 337–350, 1985. View at Scopus
  18. J. M. Lagarón, S. López-Quintana, J. C. Rodriguez-Cabello, J. C. Merino, and J. M. Pastor, “Comparative study of the crystalline morphology present in isotropic and uniaxially stretched conventional and metallocene polyethylenes,” Polymer, vol. 41, no. 8, pp. 2999–3010, 2000. View at Publisher · View at Google Scholar
  19. S. Rabiej, B. Wlodzimierz, and B. Dorota, “The transition phase in polyethylene—WAXS and Raman investigations,” Fibres & Textiles in Eastern Europe, vol. 16, no. 6, pp. 57–62, 2008.
  20. W. G. Hu and K. Schmidt-Rohr, “Characterization of ultradrawn polyethylene fibers by NMR: crystallinity, domain sizes and a highly mobile second amorphous phase,” Polymer, vol. 41, no. 8, pp. 2979–2987, 2000. View at Publisher · View at Google Scholar · View at Scopus