About this Journal Submit a Manuscript Table of Contents
International Journal of Polymer Science
Volume 2011 (2011), Article ID 841812, 7 pages
http://dx.doi.org/10.1155/2011/841812
Research Article

Mechanical and Thermal Behaviour of Ecofriendly Composites Reinforced by Kenaf and Caroà Fibers

1Institute of Chemistry and Technology of Polymers, National Research Council of Italy, Via Campi Flegrei, 34 80078 Pozzuoli (Na), Italy
2Department of Materials and Production Engineering, University of Napoli “Federico II”, p.le Tecchio, 80 80125 Napoli, Italy

Received 31 March 2011; Accepted 12 May 2011

Academic Editor: Susheel Kalia

Copyright © 2011 P. Persico et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. K. Mohanty, M. Misra, and L. T. Drzal, “Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world,” Journal of Polymers and the Environment, vol. 10, no. 1-2, pp. 19–26, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. V. K. Mathur, “Composite materials from local resources,” Construction and Building Materials, vol. 20, no. 7, pp. 470–477, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Y. Cheung, M. P. Ho, K. T. Lau, F. Cardona, and D. Hui, “Natural fibre-reinforced composites for bioengineering and environmental engineering applications,” Composites Part B, vol. 40, no. 7, pp. 655–663, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Chabba and A. N. Netravali, “‘Green’ composites part 1: characterization of flax fabric and glutaraldehyde modified soy protein concentrate composites,” Journal of Materials Science, vol. 40, no. 23, pp. 6263–6273, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Chabba and A. N. Netravali, “‘Green’ composites part 2: characterization of flax yarn and glutaraldehyde/poly(vinyl alcohol) modified soy protein concentrate composites,” Journal of Materials Science, vol. 40, no. 23, pp. 6275–6282, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Chabba, G. F. Matthews, and A. N. Netravali, “‘Green’ composites using cross-linked soy flour and flax yarns,” Green Chemistry, vol. 7, no. 8, pp. 576–581, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Lodha and A. N. Netravali, “Characterization of phytagel® modified soy protein isolate resin and unidirectional flax yarn reinforced “Green” composites,” Polymer Composites, vol. 26, no. 5, pp. 647–659, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. A. K. Mohanty, P. Tummala, W. Liu, M. Misra, P. V. Mulukutla, and L. T. Drzal, “Injection molded biocomposites from soy protein based bioplastic and short industrial hemp fiber,” Journal of Polymers and the Environment, vol. 13, no. 3, pp. 279–285, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Philip, T. Keshavarz, and I. Roy, “Polyhydroxyalkanoates: biodegradable polymers with a range of applications,” Journal of Chemical Technology and Biotechnology, vol. 82, no. 3, pp. 233–247, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Yu, K. Dean, and L. Li, “Polymer blends and composites from renewable resources,” Progress in Polymer Science (Oxford), vol. 31, no. 6, pp. 576–602, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. R. A. Shanks, A. Hodzic, and S. Wong, “Thermoplastic biopolyester natural fiber composites,” Journal of Applied Polymer Science, vol. 91, no. 4, pp. 2114–2121, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Shibata, S. Oyamada, S. I. Kobayashi, and D. Yaginuma, “Mechanical properties and biodegradability of green composites based on biodegradable polyesters and lyocell fabric,” Journal of Applied Polymer Science, vol. 92, no. 6, pp. 3857–3863, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. D. G. Silveira, F. Vidigal Duarte Souza, C. R. Pelacani, A. Silva Souza, C. A. Silva Ledo, and J. R. Ferreira de Santana, “Micropropagation and in vitro conservation of Neoglaziovia variegata (Arr. Cam.) mez, a fiber producing bromeliad from Brazil,” Brazilian Archives of Biology and Technology, vol. 52, no. 4, pp. 923–932, 2009.
  14. A. M. Mohd Edeerozey, H. M. Akil, A. B. Azhar, and M. I. Z. Ariffin, “Chemical modification of kenaf fibers,” Materials Letters, vol. 61, no. 10, pp. 2023–2025, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Z. Rong, M. Q. Zhang, Y. Liu, G. C. Yang, and H. M. Zeng, “The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites,” Composites Science and Technology, vol. 61, no. 10, pp. 1437–1447, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Bogoeva-Gaceva, M. Avella, M. Malinconico et al., “Natural fiber eco-composites,” Polymer Composites, vol. 28, no. 1, pp. 98–107, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. J. E. G. van Dam, “Environmental benefits of natural fibre production and use,” in Proceedings of the Symposium on Natural Fibres, 2009.
  18. V. V. Tyagi and D. Buddhi, “PCM thermal storage in buildings: a state of art,” Renewable and Sustainable Energy Reviews, vol. 11, no. 6, pp. 1146–1166, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Izzo Renzi, C. Carfagna, and P. Persico, “Thermoregulated natural leather using phase change materials: an example of bioinspiration,” Applied Thermal Engineering, vol. 30, no. 11-12, pp. 1369–1376, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. H. J. Kim and D. W. Seo, “Effect of water absorption fatigue on mechanical properties of sisal textile-reinforced composites,” International Journal of Fatigue, vol. 28, no. 10, pp. 1307–1314, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Bhardwaj, A. K. Mohanty, L. T. Drzal, F. Pourboghrat, and M. Misra, “Renewable resource-based green composites from recycled cellulose fiber and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bioplastic,” Biomacromolecules, vol. 7, no. 6, pp. 2044–2051, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. P. Chen and L. Zhang, “New evidences of glass transitions and microstructures of soy protein plasticized with glycerol,” Macromolecular Bioscience, vol. 5, no. 3, pp. 237–245, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. P. Tummala, W. Liu, L. T. Drzal, A. K. Mohanty, and M. Misra, “Influence of plasticizers on thermal and mechanical properties and morphology of soy-based bioplastics,” Industrial and Engineering Chemistry Research, vol. 45, no. 22, pp. 7491–7496, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Singh and A. K. Mohanty, “Wood fiber reinforced bacterial bioplastic composites: fabrication and performance evaluation,” Composites Science and Technology, vol. 67, no. 9, pp. 1753–1763, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. G. Canché-Escamilla, J. Rodriguez-Laviada, J. I. Cauich-Cupul, E. Mendizábal, J. E. Puig, and P. J. Herrera-Franco, “Flexural, impact and compressive properties of a rigid-thermoplastic matrix/cellulose fiber reinforced composites,” Composites—Part A, vol. 33, no. 4, pp. 539–549, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Keller, “Compounding and mechanical properties of biodegradable hemp fibre composites,” Composites Science and Technology, vol. 63, no. 9, pp. 1307–1316, 2003. View at Publisher · View at Google Scholar · View at Scopus