About this Journal Submit a Manuscript Table of Contents
International Journal of Polymer Science
Volume 2011 (2011), Article ID 964193, 10 pages
http://dx.doi.org/10.1155/2011/964193
Research Article

A Study of Nanoclay Reinforcement of Biocomposites Made by Liquid Composite Molding

1Department of Mechanical Engineering, Chair on Composites of High Performance (CCHP), Research Centre on Plastics and Composites (CREPEC), Ecole Polytechnique de Montréal, P.O. Box 6079, Station Centre-Ville, Montreal, QC, Canada H3C 3A7
2Centre for Advanced Composite Materials, Department of Engineering, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand

Received 1 March 2011; Accepted 3 May 2011

Academic Editor: Susheel Kalia

Copyright © 2011 Farida Bensadoun et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Abend and G. Lagaly, “Sol-gel transitions of sodium montmorillonite dispersions,” Applied Clay Science, vol. 16, no. 3-4, pp. 201–227, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. W.-F. Lee and Y.-T. Fu, “Effect of montmorillonite on the swelling behavior and drug-release behavior of nanocomposite hydrogels,” Journal of Applied Polymer Science, vol. 89, no. 13, pp. 3652–3660, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Sinha Ray and M. Okamoto, “Polymer/layered silicate nanocomposites: a review from preparation to processing,” Progress in Polymer Science, vol. 28, no. 11, pp. 1539–1641, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. F. Gao, “Clay/polymer composites: the story,” Materials Today, vol. 7, no. 11, pp. 50–55, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. L. A. Utracki, M. Sepehr, and E. Boccaleri, “Synthetic, layered nanoparticles for polymeric nanocomposites (PNCs),” Polymers for Advanced Technologies, vol. 18, no. 1, pp. 1–37, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. F. Laoutid, L. Bonnaud, M. Alexandre, J. M. Lopez-Cuesta, and P. Dubois, “New prospects in flame retardant polymer materials: from fundamentals to nanocomposites,” Materials Science and Engineering R, vol. 63, no. 3, pp. 100–125, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Dean, A. M. Obore, S. Richmond, and E. Nyairo, “Multiscale fiber-reinforced nanocomposites: synthesis, processing and properties,” Composites Science and Technology, vol. 66, no. 13, pp. 2135–2142, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Denault and B. Labrecque, “Groupe technologique sur les nanocomposites polymères—PNC-Tech,” 2002, http://ww2.imi.nrc.ca/francais/PDF/factsheets/pnc-tech.pdf.
  9. S. Nazare, B. K. Kandola, and A. R. Horrocks, “Flame-retardant unsaturated polyester resin incorporating nanoclays,” Polymers for Advanced Technologies, vol. 17, no. 4, pp. 294–303, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Bartholmai and B. Schartel, “Layered silicate polymer nanocomposites: new approach or illusion for fire retardancy? Investigations of the potentials and the tasks using a model system,” Polymers for Advanced Technologies, vol. 15, pp. 355–364, 2004.
  11. M. Alexandre and P. Dubois, “Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials,” Materials Science and Engineering R, vol. 28, no. 1, pp. 1–63, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Haq, R. Burgueno, A. K. Mohanty, and M. Misra, “Processing techniques for bio-based unsaturated-polyester/clay nanocomposites: tensile properties, efficiency, and limits,” Composites Part A: Applied Science and Manufacturing, vol. 40, no. 4, pp. 394–403, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. T. J. Pinnavaia and G. W. Beall, Polymer—8 Clay Nanocomposites, vol. 51, John Wiley & Sons, Chichester, UK, 2000.
  14. D. Burgentzle, J. Duchet, J. F. Gerard, A. Jupin, and B. Fillon, “Solvent-based nanocomposite coatings: I. Dispersion of organophilic montmorillonite in organic solvents,” Journal of Colloid and Interface Science, vol. 278, no. 1, pp. 26–39, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. I. Ortega, “Fabrication et caracterisation de nanocomposites a matrice epoxy,” , M.S. dissertation, Mechnanical Engineering, Ecole Polytechnique, Montreal, Canda, 2008.
  16. F. Hussain, D. Dean, A. Haque, and A. M. Shamsuzzoha, “S2 glass/vinylester polymer nanocomposites: manufacturing, structures, thermal and mechanical properties,” Journal of Advanced Materials, vol. 37, no. 1, pp. 16–27, 2005. View at Scopus
  17. L. Y. Lin, J. H. Lee, C. E. Hong, G. H. Yoo, and S. G. Advani, “Preparation and characterization of layered silicate/glass fiber/epoxy hybrid nanocomposites via vacuum-assisted resin transfer molding (VARTM),” Composites Science and Technology, vol. 66, no. 13, pp. 2116–2125, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Miyagawa, A. K. Mohanty, R. Burgueno, L. T. Drzal, and M. Misra, “Novel biobased resins from blends of functionalized soybean oil and unsaturated polyester resin,” Journal of Polymer Science Part B, vol. 45, no. 6, pp. 698–704, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Haq, R. Burgueno, A. K. Mohanty, and M. Misra, “Bio-based unsaturated polyester/layered silicate nanocomposites: Characterization and thermo-physical properties,” Composites Part A: Applied Science and Manufacturing, vol. 40, no. 4, pp. 540–547, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Weinong, S. Bo, L. Zengshe, and S. Erhan, “Compressive properties of epoxidized soybean oil/clay nanocomposites,” International Journal of Plasticity, vol. 22, no. 8, pp. 1549–1568, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. Z. Liu, S. Z. Erhan, and J. Xu, “Preparation, characterization and mechanical properties of epoxidized soybean oil/clay nanocomposites,” Polymer, vol. 46, no. 23, pp. 10119–10127, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Uyama, M. Kuwabara, T. Tsujimoto, M. Nakano, A. Usuki, and S. Kobayashi, “Green nanocomposites from renewable resources: plant oil-clay hybrid materials,” Chemistry of Materials, vol. 15, no. 13, pp. 2492–2494, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Kozowski and M. Wadyka-Przybylak, “Flammability and fire resistance of composites reinforced by natural fibers,” Polymers for Advanced Technologies, vol. 19, no. 6, pp. 446–453, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. N. R. C. o. Canada, “From fiber glass to biofibres,” 2010, http://www.nrc-cnrc.gc.ca/eng/dimensions/issue3/flax.html.
  25. P. J. Roe and M. P. Ansell, “Jute-reinforced polyester composites,” Journal of Materials Science, vol. 20, no. 11, pp. 4015–4020, 1985. View at Publisher · View at Google Scholar · View at Scopus
  26. M. K. Sridhar, G. Basavarappa, S. G. Kasturi, and N. Balasubramanian, “Mechanical properties of jute-polyester composites,” Indian Journal of Technology, vol. 22, no. 6, pp. 213–215, 1984. View at Scopus
  27. A. N. Shah and S. C. Lakkad, “Mechanical properties of jute-reinforced plastics,” Fibre Science and Technology, vol. 15, no. 1, pp. 41–46, 1981. View at Scopus
  28. E. T. N. Bisanda and M. P. Ansell, “The effect of silane treatment on the mechanical and physical properties of sisal-epoxy composites,” Composites Science and Technology, vol. 41, no. 2, pp. 165–178, 1991. View at Scopus
  29. S. V. Prasad, C. Pavithran, and P. K. Rohatgi, “Alkali treatment of coir fibres for coir-polyester composites,” Journal of Materials Science, vol. 18, no. 5, pp. 1443–1454, 1983. View at Publisher · View at Google Scholar · View at Scopus
  30. W. D. Brouwer, “Natural fibre composites in structural components: alternative applications for Sisal?” 2010, http://www.fao.org/docrep/004/y1873e/y1873e0a.htm.
  31. S. Horold, “Phosphorus flame retardants in thermoset resins,” Polymer Degradation and Stability, vol. 64, no. 3, pp. 427–431, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. S. V. Levchik, “Halogen-free approach in fire retardancy of thermoplastic polyesters,” Recent Advances in Flame Retardancy of Polymers, vol. 13, pp. 296–314, 2002.
  33. A. H. B. Kandola and D. Price, “Nanocomposites,” in Fire Retardant Materials, chapter 6, Woodhead Publishing, Cambridge, UK, 2001.
  34. J. W. Gilman, C. L. Jackson, A. B. Morgan et al., “Flammability properties of polymer - Layered-silicate nanocomposites. Polypropylene and polystyrene nanocomposites,” Chemistry of Materials, vol. 12, no. 7, pp. 1866–1873, 2000. View at Publisher · View at Google Scholar · View at Scopus
  35. J. W. Gilman, “Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites,” Applied Clay Science, vol. 15, no. 1-2, pp. 31–49, 1999. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Gilman, T. Kashiwagi, A. Morgan, et al., Flammability of polymer clay nanocomposites consortium: year one annual report, 2000.
  37. C. Wilkie, “Recent advanced in fire retardancy of polymerclay nanocomposite,” in Recent Advances in Flame Retardancy of Polymers, vol. 13, pp. 206–217, Business Communications Company, Norwalk, Calif, USA, 2002.
  38. Q. Govignon, S. Bickerton, J. Morris, and P. A. Kelly, “Full field monitoring of the resin flow and laminate properties during the resin infusion process,” Composites Part A: Applied Science and Manufacturing, vol. 39, no. 9, pp. 1412–1426, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. J. S. Leclerc and E. Ruiz, “Porosity reduction using optimized flow velocity in Resin Transfer Molding,” Composites Part A: Applied Science and Manufacturing, vol. 39, no. 12, pp. 1859–1868, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. R. Wagener and T. J. G. Reisinger, “A rheological method to compare the degree of exfoliation of nanocomposites,” Polymer, vol. 44, no. 24, pp. 7513–7518, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. R. Krishnamoorti, J. Ren, and A. S. Silva, “Shear response of layered silicate nanocomposites,” Journal of Chemical Physics, vol. 114, no. 11, pp. 4968–4973, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. J. C. Pierre, C. R. D. K. Daniel, and P. C. Raj, Rheology of Polymeric Systems: Principles and Applications, Hanser Publishers, New York, NY, USA, 1st edition, 1997.
  43. T. Phillips, “The physics of whipped cream,” 2008, http://science.nasa.gov/science-news/science-at-nasa/2008/25apr_cvx2.
  44. F. A. Morrison, Understanding Rheology, Oxford University Press, Nwe York, NY, USA, 2001.
  45. J. D. G. Durán, M. M. Ramos-Tejada, F. J. Arroyo, and F. González-Caballero, “Rheological and electrokinetic properties of sodium montmorillonite suspensions: I. Rheological properties and interparticle energy of interaction,” Journal of Colloid and Interface Science, vol. 229, pp. 107–117, 2000.