About this Journal Submit a Manuscript Table of Contents
International Journal of Polymer Science
Volume 2012 (2012), Article ID 252981, 6 pages
http://dx.doi.org/10.1155/2012/252981
Research Article

Viscoelastic Properties of Mineral-Filled Poly(lactic acid) Composites

1Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
2Polymer Centre, Faculty of Technology, Tomas Bata University in Zlin, 76272 Zlin, Czech Republic
3Institute for Wood Technology and Renewable Materials, University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz-Strasse 24, 3430 Tulln, Austria

Received 29 December 2011; Revised 27 February 2012; Accepted 1 March 2012

Academic Editor: Kibret Mequanint

Copyright © 2012 Adriana Gregorova et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. T. H. Vink, K. R. Rábago, D. A. Glassner, and P. R. Gruber, “Applications of life cycle assessment to NatureWorks polylactide (PLA) production,” Polymer Degradation and Stability, vol. 80, no. 3, pp. 403–419, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Scott and D. M. Wiles, “Degradable hydrocarbon polymers in waste and litter control,” in Degradable Polymers, G. Scott, Ed., Principles and Applications, pp. 449–479, Kluwer Academic, Dordrecht, The Netherlands, 2002.
  3. J. J. Kolstad, “Crystallization kinetics of poly(L-lactide-co-meso-lactide),” Journal of Applied Polymer Science, vol. 62, no. 7, pp. 1079–1091, 1996. View at Scopus
  4. H. Urayama, C. Ma, and Y. Kimura, “Mechanical and thermal properties of poly(L-lactide) incorporating various inorganic fillers with particle and whisker shapes,” Macromolecular Materials and Engineering, vol. 288, no. 7, pp. 562–568, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. H.-S. Kim, B. H. Park, J. H. Choi, and J.-S. Yoon, “Mechanical properties and thermal stability of poly(L-lactide)/calcium carbonate composites,” Journal of Applied Polymer Science, vol. 109, no. 5, pp. 3087–3092, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. M. J. Sobkowicz, J. L. Feaver, and J. R. Dorgan, “Clean and green bioplastic composites: comparison of calcium sulfate and carbon nanospheres in polylactide composites,” Clean, vol. 36, no. 8, pp. 706–713, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Ignjatovic and D. Uskokovic, “Synthesis and application of hydroxyapatite/polylactide composite biomaterial,” Applied Surface Science, vol. 238, no. 1-4, pp. 314–319, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Gregorova, V. Sedlarik, M. Pastorek, H. Jachandra, and F. Stelzer, “Effect of compatibilizing agent on the properties of highly crystalline composites based on poly(lactic acid) and wood flour and/or mica,” Journal of Polymers and the Environment, vol. 19, no. 2, pp. 372–381, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Jancar, “Mineral fillers in thermoplastics,” in Raw Materials and Processing, vol. 139 of Advances in Polymer Science, pp. 1–65, Springer, Berlin, Germany, 1999.
  10. C. Dupuy and P. Bussi, “New dispersion process for submicronic fillers in thermoplastics,” Macromolecular Symposia, vol. 169, no. 1, pp. 103–107, 2001. View at Publisher · View at Google Scholar
  11. T. Huuhilo, O. Martikka, S. Butylina, and T. Kärki, “Mineral fillers for wood-plastic composites,” Wood Material Science and Engineering, vol. 5, no. 1, pp. 34–40, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Gregorova, M. Hrabalova, R. Wimmer, B. Saake, and C. Altaner, “Poly(lactide acid) composites reinforced with fibers obtained from different tissue types of Picea sitchensis,” Journal of Applied Polymer Science, vol. 114, no. 5, pp. 2616–2623, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Gregorova, M. Hrabalova, R. Kovalcik, and R. Wimmer, “Surface modification of spruce wood flour and effects on the dynamic fragility of PLA/wood composites,” Polymer Engineering and Science, vol. 51, no. 1, pp. 143–150, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Gregorova, R. Wimmer, M. Hrabalova, M. Koller, T. Ters, and N. Mundigler, “Effect of surface modification of beech wood flour on mechanical and thermal properties of poly (3-hydroxybutyrate)/wood flour composites,” Holzforschung, vol. 63, no. 5, pp. 565–570, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Hrabalova, A. Gregorova, R. Wimmer, V. Sedlarik, M. Machovsky, and N. Mundigler, “Effect of wood flour loading and thermal annealing on viscoelastic properties of poly(lactic acid) composite films,” Journal of Applied Polymer Science, vol. 118, no. 3, pp. 1534–1540, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. J. F. Mano, “Study of the segmental dynamics in semi-crystalline poly(lactic acid) using mechanical spectroscopies,” Macromolecular Bioscience, vol. 5, no. 4, pp. 337–343, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. I. Spinu and G. B. McKenna, “Physical aging of nylon 66,” Polymer Engineering & Science, vol. 34, no. 24, pp. 1808–1814, 1994. View at Publisher · View at Google Scholar
  18. L. H. Sperling, Introduction to Physical Polymer Science, John Wiley & Sons, Toronto, Canada, 4th edition, 2006, Edited by L.H. Sperling.
  19. S. Farzaneh and A. Tcharkhtchi, “Viscoelastic properties of polypropylene reinforced with mica in Tα and Tαc transition zones,” International Journal of Polymer Science, vol. 2011, Article ID 427095, 5 pages, 2011. View at Publisher · View at Google Scholar
  20. Y. Li, K. Venkateshan, and S. S. Xiuzhi, “Mechanical and thermal properties, morphology and relaxation characteristics of poly(lactic acid) and soy flour/wood flour blends,” Polymer International, vol. 59, no. 8, pp. 1099–1109, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. N. C. Bleach, S. N. Nazhat, K. E. Tanner, M. Kellomäki, and P. Törmälä, “Effect of filler content on mechanical and dynamic mechanical properties of particulate biphasic calcium phosphate—polylactide composites,” Biomaterials, vol. 23, no. 7, pp. 1579–1585, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. B. H. Li and M.-C. Yang, “Improvement of thermal and mechanical properties of poly(L-lactic acid) with 4,4-methylene diphenyl diisocyanate,” Polymers for Advanced Technologies, vol. 17, no. 6, pp. 439–443, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Gregorova and R. Wimmer, “Filler-matrix compatibility of poly(lactic acid) based composites,” in Polylactic Acid: Synthesis, Properties and Applications, V. Piemonte, Ed., chapter 5, pp. 97–119, Nova Science, New York, NY, USA, 2012.
  24. S. Pattanawanidchai, P. Saeoui, and C. Sirisinha, “Influence of precipitated silica on dynamic mechanical properties and resistance to oil and thermal aging in CPE/NR blends,” Journal of Applied Polymer Science, vol. 96, no. 6, pp. 2218–2224, 2005. View at Publisher · View at Google Scholar · View at Scopus