About this Journal Submit a Manuscript Table of Contents
International Journal of Polymer Science
Volume 2012 (2012), Article ID 484523, 10 pages
http://dx.doi.org/10.1155/2012/484523
Review Article

Synthesis of a Novel Family of Polysilsesquioxanes Having Oligothiophenes with Well-Defined Structures

Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Hiroshima, Higashi-Hiroshima 739-8527, Japan

Received 12 June 2012; Accepted 21 October 2012

Academic Editor: Kimihiro Matsukawa

Copyright © 2012 Ichiro Imae et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Auner and J. Weis, Organosilicon Chemistry VI, from Molecules to Materials, Wiley-VCH, Weinheim, Germany, 2005.
  2. S. J. Clarson, J. J. Fitzgerald, M. J. Owen, S. D. Smith, and M. E. Van Dyke, Science and Technology of Silicones and Silicone-Modified Materials, ACS Symposium Series 964, Oxford University Press, Washington, DC, USA, 2007.
  3. C. Sanchez and F. Ribot, “Design of hybrid organic-inorganic materials synthesized via sol-gel chemistry,” New Journal of Chemistry, vol. 18, no. 10, pp. 1007–1047, 1994.
  4. K. J. Shea and D. A. Loy, “Bridged polysilsesquioxanes. Molecular-engineered hybrid organic−inorganic materials,” Chemistry of Materials, vol. 13, no. 10, pp. 3306–3319, 2001. View at Publisher · View at Google Scholar
  5. A. Walcarius, “Electrochemical applications of silica-based organic−inorganic hybrid materials,” Chemistry of Materials, vol. 13, no. 10, pp. 3351–3372, 2001. View at Publisher · View at Google Scholar
  6. R. Corriu, “Organosilicon chemistry and nanoscience,” Journal of Organometallic Chemistry, vol. 686, no. 1-2, pp. 32–41, 2003. View at Publisher · View at Google Scholar
  7. A. Walcarius, D. Mandler, J. A. Cox, M. Collinson, and O. Lev, “Exciting new directions in the intersection of functionalized sol-gel materials with electrochemistry,” Journal of Materials Chemistry, vol. 15, no. 35-36, pp. 3663–3689, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Lerouge, G. Cerveau, and R. J. P. Corriu, “Supramolecular self-organization in non-crystalline hybrid organic-inorganic nanomaterials induced by van der Waals interactions,” New Journal of Chemistry, vol. 30, no. 10, pp. 1364–1376, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Fichou, Ed., Handbook of Oligo- and Polythiophenes, Wiley-VCH, Weinheim, Germany, 1999.
  10. P. Bäuerle, “Oligothiophenes,” in Electronic Materials: the Oligomer Approach, K. Müllen and G. Wegner, Eds., chapter 2, pp. 105–1197, Wiley-VCH, Weinheim, Germany, 1998.
  11. A. Mishra, C. Q. Ma, and P. Bäuerle, “Functional oligothiophenes: molecular design for multidimensional nanoarchitectures and their applications,” Chemical Reviews, vol. 109, no. 3, pp. 1141–1276, 2009. View at Publisher · View at Google Scholar
  12. I. Imae, S. Takayama, D. Tokita et al., “Development of anchored oligothiophenes on substrates for the application to the tunable transparent conductive films,” Polymer, vol. 50, no. 26, pp. 6198–6201, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Harima, J. Ohshita, I. Imae, T. Sugioka, and K. Kanehira, “Electrically conductive laminates having organic compounds on surfaces and their manufacture, doped electrically conductive materials, and electrochromic materials,” JP 2010266727 A 20101125, Japan Kokai Tokkyo Koho, 2010.
  14. I. Imae, D. Tokita, Y. Ooyama, K. Komaguchi, J. Ohshita, and Y. Harima, “Charge transport properties of polymer films comprising oligothiophene in silsesquioxane network,” Polymer Chemistry, vol. 2, no. 4, pp. 868–872, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. I. Imae, D. Tokita, Y. Ooyama, K. Komaguchi, J. Ohshita, and Y. Harima, “Oligothiophenes incorporated in a polysilsesquioxane network: application to tunable transparent conductive films,” Journal of Materials Chemistry, vol. 22, pp. 16407–16415, 2012. View at Publisher · View at Google Scholar
  16. R. J. P. Corriu, J. J. E. Moreau, P. Thepot, and M. W. C. Man, “Trialkoxysilyl Mono-, Bi-, and terthiophenes as molecular precursors of hybrid organic-inorganic materials,” Chemistry of Materials, vol. 6, no. 5, pp. 640–649, 1994. View at Publisher · View at Google Scholar
  17. Y. Harima, Y. Kunugi, K. Yamashita, and M. Shiotani, “Determination of mobilities of charge carriers in electrochemically anion-doped polythiophene film,” Chemical Physics Letters, vol. 317, no. 3–5, pp. 310–314, 2000. View at Scopus
  18. J. Yano, M. Kobayashi, S. Yamasaki, Y. Harima, and K. Yamashita, “Mean redox potentials of polyaniline determined by chronocoulometry,” Synthetic Metals, vol. 119, no. 1–3, pp. 315–316, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Harima, T. Eguchi, and K. Yamashita, “Enhancement of carrier mobilities in poly(3-methylthiophene) by an electrochemical doping,” Synthetic Metals, vol. 95, no. 1, pp. 69–74, 1998. View at Scopus
  20. The American Society for Testing and Materials (ASTM) D, 3363- 92, Test Method for Film Hardness by Pencil Test.
  21. I. Imae, S. Imabayashi, K. Korai et al., “Electrosynthesis and charge-transport properties of poly(3′,4′-ethylenedioxy-2,2′:5′,2′′-terthiophene),” Materials Chemistry and Physics, vol. 131, no. 5, pp. 752–756, 2012. View at Publisher · View at Google Scholar