About this Journal Submit a Manuscript Table of Contents
International Journal of Polymer Science
Volume 2012 (2012), Article ID 526795, 17 pages
http://dx.doi.org/10.1155/2012/526795
Research Article

Characterization and Some Insights into the Reaction Chemistry of Polymethylsilsesquioxane or Methyl Silicone Resins

1Electronics Solutions S&T, Dow Corning Toray Co., Ltd., 2-2 Chigusa-Kaigan, Chiba Ichihara 299-0108, Japan
2Analytical Sciences, Dow Corning Corporation, 2200 W. Salzburg Road, Midland, MI 48686-0994, USA
3Institute for Inorganic and Analytical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany

Received 15 June 2012; Accepted 17 August 2012

Academic Editor: Takahiro Gunji

Copyright © 2012 Maki Itoh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. H. Brown, “Silicones in protective coatings,” in Treatise on Coatings, R. Myers and J. S. Long, Eds., vol. 1, part 3, chapter 13, pp. 513–563, Marcel Dekker, New York, NY, USA, 1972.
  2. R. H. Baney, M. Itoh, A. Sakakibara, and T. Suzuki, “Silsesquioxanes,” Chemical Reviews, vol. 95, no. 5, pp. 1409–1430, 1995. View at Scopus
  3. M. G. Voronkov and V. I. Lavrent'yev, “Polyhedral oligosilsesquioxanes and their homo delivatives,” Topics in Current Chemistry, vol. 102, pp. 199–236, 1982. View at Publisher · View at Google Scholar
  4. P. G. Harrison, “Silicate cages: precursors to new materials,” Journal of Organometallic Chemistry, vol. 542, no. 2, pp. 141–183, 1997. View at Scopus
  5. V. Chandrasekhar, R. Boomishankar, and S. Nagendran, “Recent developments in the synthesis and structure of organosilanols,” Chemical Reviews, vol. 104, no. 12, pp. 5847–5910, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. D. B. Cordes, P. D. Lickiss, and F. Rataboul, “Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes,” Chemical Reviews, vol. 110, no. 4, pp. 2081–2173, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. E. L. Warrick, Forty Years of Firsts: The Recollections of a Dow Corning Pioneer, chapter 1, McGraw-Hill, New York, NY, USA, 1990.
  8. J. F. Brown Jr., J. H. Vogt Jr., A. Katchman, J. W. Eustance, K. M. Kiser, and K. W. Krantz, “Double chain polymers of phenylsilsesquioxane,” Journal of the American Chemical Society, vol. 82, no. 23, pp. 6194–6195, 1960. View at Publisher · View at Google Scholar
  9. J. F. Brown, “Double chain polymers and nonrandom crosslinking,” Journal of Polymer Science C, vol. 1, no. 1, pp. 83–97, 1963. View at Publisher · View at Google Scholar
  10. K. A. Andrianov, A. A. Zhdanov, and V. Yu Levin, “Some physical properties of organosilicon ladder polymers,” Annual Review of Materials Science, vol. 8, pp. 313–326, 1978. View at Publisher · View at Google Scholar
  11. D. Ya Tsvankin, V. Yu Levin, V. S. Pankov, V. P. Zhukov, A. A. Zhdanov, and K. A. Andrianov, “New type of temperature variation of X-ray diffraction from a number of polymers,” Polymer Science U.S.S.R., vol. 21, no. 9, pp. 2348–2358, 1979. View at Publisher · View at Google Scholar · View at Scopus
  12. E. S. Park, H. W. Ro, C. V. Nguyen, R. L. Jaffe, and D. Y. Yoon, “Infrared spectroscopy study of microstructures of poly(silsesquioxane)s,” Chemistry of Materials, vol. 20, no. 4, pp. 1548–1554, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. T. E. Helminiak, C. L. Benner, and W. E. Gibbs, “Some solution properties of the ladder polymer cis-syndiotactic poly-phenylsilsesquioxane,” ACS Polymer Preprints, vol. 8, pp. 284–291, 1967.
  14. V. N. Tsvetkov, K. A. Andrianov, G. I. Okhrimenko, and M. G. Vitovskaya, “Conformation and rigidity of ladder polymer molecules,” European Polymer Journal, vol. 7, no. 9, pp. 1215–1230, 1971. View at Scopus
  15. L. Shi, X. Zhang, Y. Si, M. Ye, and D. Li, “Solution properties of ladder-like polymer polyphenylsilsesquioxanes,” Chinese Journal of Polymer Science, vol. 5, no. 4, pp. 359–365, 1987. View at Scopus
  16. T. E. Helminiak and G. C. Berry, “Properties of the ladder polymer cis-syndiotactic poly(phenylsilsesquioxane) in solution,” Journal of Polymer Science, vol. 65, no. 1, pp. 107–123, 1978. View at Publisher · View at Google Scholar · View at Scopus
  17. C. L. Frye and J. M. Klosowski, “Concerning the so-called “ladder structure” of equilibrated phenylsilsesquioxane,” Journal of the American Chemical Society, vol. 93, no. 18, pp. 4599–4601, 1971. View at Scopus
  18. M. Unno, A. Suto, K. Takada, and H. Matsumoto, “Synthesis of ladder and cage silsesquioxanes from 1,2,3,4- tetrahydroxycyclotetrasiloxane,” Bulletin of the Chemical Society of Japan, vol. 73, no. 1, pp. 215–220, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Unno, A. Suto, and H. Matsumoto, “Pentacyclic laddersiloxane,” Journal of the American Chemical Society, vol. 124, no. 8, pp. 1574–1575, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Unno, T. Matsumoto, and H. Matsumoto, “Synthesis of laddersiloxanes by novel stereocontrolled approach,” Journal of Organometallic Chemistry, vol. 692, no. 1–3, pp. 307–312, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Chang, T. Matsumoto, H. Matsumoto, and M. Unno, “Synthesis and characterization of heptacyclic laddersiloxanes and ladder polysilsesquioxane,” Applied Organometallic Chemistry, vol. 24, no. 3, pp. 241–246, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Kyushin, R. Tanaka, K. Arai, A. Sakamoto, and H. Matsumoto, “Domino oxidation of ladder oligosilanes: formation of novel ladder frameworks containing oligosiloxane and oligosilane chains,” Chemistry Letters, no. 12, pp. 1297–1298, 1999. View at Scopus
  23. H. Seki, T. Kajiwara, Y. Abe, and T. Gunji, “Synthesis and structure of ladder polymethylsilsesquioxanes from sila-functionalized cyclotetrasiloxanes,” Journal of Organometallic Chemistry, vol. 695, no. 9, pp. 1363–1369, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. A. J. Barry, W. H. Daudt, J. J. Domicone, and J. W. Gilkey, “Crystalline organosilsesquioxanes,” Journal of the American Chemical Society, vol. 77, no. 16, pp. 4248–4252, 1955. View at Scopus
  25. K. A. Andrianov and B. A. Lzmaylov, “Hydrolytic poly-condensation of higher alkyltrichlorosilanes,” Journal of Organometallic Chemistry, vol. 8, no. 3, pp. 435–441, 1967. View at Publisher · View at Google Scholar
  26. C. L. Frye and W. T. Collins, “The oligomeric silsesquioxanes, (HSiO3/2)n,” Journal of the American Chemical Society, vol. 92, no. 19, pp. 5586–5588, 1970. View at Scopus
  27. P. A. Agaskar and W. G. Klemperer, “The higher hydridospherosiloxanes: synthesis and structures of HnSinO1.5n (n=12,14,16,18),” Inorganica Chimica Acta, vol. 229, no. 1-2, pp. 355–364, 1995. View at Publisher · View at Google Scholar · View at Scopus
  28. F. J. Feher, D. A. Newman, and J. F. Walzer, “Silsesquioxanes as models for silica surfaces,” Journal of the American Chemical Society, vol. 111, no. 5, pp. 1741–1748, 1989. View at Scopus
  29. T. Kondo, K. Yoshii, K. Horie, and M. Itoh, “Photoprobe study of siloxane polymers. 3. Local free volume of polymethylsilsesquioxane probed by photoisomerization of azobenzene,” Macromolecules, vol. 33, no. 10, pp. 3650–3658, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. Z. Xie, Z. He, D. Dai, and R. Zhang, “Study on the synthesis and characterization of the soluble, high molecular weight and ladderlike polymethylsilsesquioxane,” Chinese Journal of Polymer Science, vol. 7, no. 2, pp. 183–188, 1989. View at Scopus
  31. G. E. Maciel, M. J. Sullivan, and D. W. Sindorf, “Carbon-13 and silicon-29 nuclear magnetic resonance spectra of solid poly(methylsiloxane) polymers,” Macromolecules, vol. 14, no. 5, pp. 1607–1608, 1981. View at Scopus
  32. G. Engelhardt, H. Jancke, E. Lippmaa, and A. Samoson, “Structure investigations of solid organosilicon polymers by high resolution solid state 29Si NMR,” Journal of Organometallic Chemistry, vol. 210, no. 3, pp. 295–301, 1981. View at Publisher · View at Google Scholar · View at Scopus
  33. E. D. Lipp, “Deuteration technique to detect trace silanol by IR spectroscopy,” Personal communication to M. Itoh, March 2000.
  34. F. J. Feher, D. Soulivong, and G. T. Lewis, “Facile framework cleavage reactions of a completely condensed silesquioxane framework,” Journal of the American Chemical Society, vol. 119, no. 46, pp. 11323–11324, 1997. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Unno, S. B. Alias, H. Saito, and H. Matsumoto, “Synthesis of hexasilsesquioxanes bearing bulky substituents: hexakis((1,1,2-trimethylpropyl)silsesquioxane) and hexakis (tert-butylsilsesquioxane),” Organometallics, vol. 15, no. 9, pp. 2413–2414, 1996. View at Scopus
  36. R. B. Taylor, B. Parbhoo, and D. M. Fillmore, “Muclear magnetic resonance spectroscopy,” in The Analytical Chemistry of Silicones, A. Lee Smith, Ed., pp. 382–383, John Wiley & Sons, New York, NY, USA, 1991.
  37. I. Hasegawa, S. Sakka, K. Kuroda, and C. Kato, “Trimethylsilylation of the hydrolysed and polycondensed products of methyltriethoxysilane,” Journal of Chromatography A, vol. 410, pp. 137–143, 1987. View at Publisher · View at Google Scholar · View at Scopus
  38. R. E. Tecklenburg, W. E. Wallace, and H. Chen, “Characterization of a [(O3/2SiMe)×(OSi(OH)Me)y(OSiMe2)z] silsesquioxane copolymer resin by mass spectrometry,” Rapid Communications in Mass Spectrometry, vol. 15, no. 22, pp. 2176–2185, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. H.-J. Kim, J.-K. Lee, S.-J. Park, H. W. Ro, D. Y. Yoo, and D. Y. Yoon, “Observation of low molecular weight poly(methylsilsesquioxane)s by graphite plate laser desorption/ionization time-of-flight mass spectrometry,” Analytical Chemistry, vol. 72, no. 22, pp. 5673–5678, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. H. W. Ro, E. S. Park, C. L. Soles, and D. Y. Yoon, “Structure-property relationships for methylsilsesquioxanes,” Chemistry of Materials, vol. 22, no. 4, pp. 1330–1339, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. R. E. Tecklenburg, “Electrospray mass spectrometry data,” Personal communication to M. Itoh, March 2000.
  42. N. Auner, B. Ziemer, B. Herrschaft, W. Ziche, P. John, and J. Weis, “Structural studies of novel siloxysilsesquioxanes,” European Journal of Inorganic Chemistry, vol. 1999, no. 7, pp. 1087–1094, 1999. View at Scopus
  43. T. Kudo and M. S. Gordon, “Theoretical studies of the mechanism for the synthesis of silsesquioxanes. 2. Cyclosiloxanes (D3 and D4),” The Journal of Physical Chemistry A, vol. 104, no. 17, pp. 4058–4063, 2000. View at Scopus
  44. T. Kudo and M. S. Gordon, “Exploring the mechanism for the synthesis of silsesquioxanes. 3. The effect of substituents and water,” The Journal of Physical Chemistry A, vol. 106, no. 46, pp. 11347–11353, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. L. W. Kelts and N. J. Armstrong, “A silicon-29 NMR study of the structural intermediates in low pH sol-gel reactions,” Journal of Materials Research, vol. 4, no. 2, pp. 423–433, 1989. View at Publisher · View at Google Scholar · View at Scopus
  46. F. Brunet, “Polymerization reactions in methyltriethoxysilane studied through 29Si NMR with polarization transfer,” Journal of Non-Crystalline Solids, vol. 231, no. 1-2, pp. 58–77, 1998. View at Publisher · View at Google Scholar · View at Scopus
  47. J. F. Brown Jr., “The polycondensation of phenylsilanetriol,” Journal of the American Chemical Society, vol. 87, no. 19, pp. 4317–4324, 1965. View at Scopus
  48. D. W. Lee and Y. Kawakam, “Incompletely condensed silsesquioxanes: formation and reactivity,” Polymer Journal, vol. 39, no. 3, pp. 230–238, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. L. V. Ng, P. Thompson, J. Sanchez, C. W. Macosko, and A. V. McCormick, “Formation of cagelike intermediates from nonrandom cyclization during acid-catalyzed sol-gel polymerization of tetraethyl orthosilicate,” Macromolecules, vol. 28, no. 19, pp. 6471–6476, 1995. View at Publisher · View at Google Scholar · View at Scopus
  50. S. E. Rankin, C. W. Macosko, and A. V. McCormick, “Importance of cyclization during the condensation of hydrolyzed alkoxysilanes,” Chemistry of Materials, vol. 10, no. 8, pp. 2037–2040, 1998. View at Scopus