About this Journal Submit a Manuscript Table of Contents
International Journal of Polymer Science
Volume 2012 (2012), Article ID 592759, 16 pages
http://dx.doi.org/10.1155/2012/592759
Review Article

Nanospheres Prepared by Self-Assembly of Random Copolymers in Supercritical Carbon Dioxide

Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan

Received 19 August 2011; Accepted 28 November 2011

Academic Editor: Takashi Kaneko

Copyright © 2012 Eri Yoshida. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. K. Ha, H. S. Song, H. J. Lee, and J. H. Kim, “Preparation of core particles for toner application by membrane emulsification,” Colloids and Surfaces A, vol. 162, no. 1–3, pp. 289–293, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. L. A. Simpson, J. Robb, J. Banford, P. F. Dietz, and J. Temperley, “Composite pigmentary material,” Eur Pat Appl EP 573150 A2 8 Dec: 14, 1993.
  3. D. S. Schlossman, “Method of coupling cosmetic materials and cosmetics containing coupled materials,” US 5314683 A1 24 May: 12, 1994.
  4. B. Bohnel and D. L. Schlosser, “Aqueous, repositionable, high peel strength pressure sensitive adhesives,” Eur Pat Appl EP 439941 A1 7 Aug: 11, 1991.
  5. S. Di and V. Frank, “Aqueous high performance contact adhesive containing microspheres,” Eur Pat Appl EP 534393 A1 31 Mar: 9, 1993.
  6. K. A. Yoon and D. J. Burgess, “Effect of cationic surfactant on transport of model drugs in emulsion systems,” Journal of Pharmacy and Pharmacology, vol. 49, no. 5, pp. 478–484, 1997. View at Scopus
  7. M. J. Lawrence, S. M. Lawrence, and D. J. Barlow, “Aggregation and surface properties of synthetic double-chain non-ionic surfactants in aqueous solution,” Journal of Pharmacy and Pharmacology, vol. 49, no. 6, pp. 594–600, 1997. View at Scopus
  8. M. Zerfa and B. W. Brooks, “Experimental investigation of vinyl chloride drop behavior during suspension polymerization,” Journal of Applied Polymer Science, vol. 65, no. 1, pp. 127–134, 1997. View at Scopus
  9. G. Wang, M. Li, and X. Chen, “Inverse suspension polymerization of sodium acrylate,” Journal of Applied Polymer Science, vol. 65, no. 4, pp. 789–794, 1997. View at Scopus
  10. Y. Chen and H. W. Yang, “Hydroxypropyl cellulose (HPC)-stabilized dispersion polymerization of styrene in polar solvents: effect of reaction parameters,” Journal of Polymer Science A, vol. 30, no. 13, pp. 2765–2772, 1992. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Horak, F. Svec, and J. M. J. Frechet, “Preparation of colored poly(styrene-co-butyl methacrylate) micrometer size beads with narrow size distribution by dispersion polymerization in presence of dyes,” Journal of Polymer Science A, vol. 33, pp. 2961–2968, 1995.
  12. H. Bamnolker and S. Marcel, “Dispersion polymerization of styrene in polar solvents: effect of reaction parameters on microsphere surface composition and surface properties, size and size distribution, and molecular weight,” Journal of Polymer Science A, vol. 34, no. 10, pp. 1857–1871, 1996. View at Scopus
  13. M. B. Taylor, R. D. Gilbert, and V. T. Stannett, “Radiation-initiated inverse emulsion polymerization of vinylpyrrolidone,” Journal of Applied Polymer Science, vol. 53, no. 10, pp. 1385–1390, 1994. View at Publisher · View at Google Scholar · View at Scopus
  14. F. Sun and E. Ruckenstein, “Preparation of high molecular weight monodisperse polystyrene latexes by concentrated emulsion polymerization,” Journal of Applied Polymer Science, vol. 48, no. 7, pp. 1279–1288, 1993. View at Publisher · View at Google Scholar · View at Scopus
  15. C. S. Chern and Y. C. Chen, “Semibatch emulsion polymerization of butyl acrylate stabilized by a polymerizable surfactant,” Polymer Journal, vol. 28, no. 7, pp. 627–632, 1996. View at Scopus
  16. J. B. McClain, D. E. Betts, D. A. Canelas et al., “Design of nonionic surfactants for supercritical carbon dioxide,” Science, vol. 274, no. 5295, pp. 2049–2052, 1996. View at Publisher · View at Google Scholar · View at Scopus
  17. E. Buhler, A. V. Dobrynin, J. M. DeSimone, and M. Rubinstein, “Light-scattering study of diblock copolymers in supercritical carbon dioxide: CO2 density-induced micellization transition,” Macromolecules, vol. 31, no. 21, pp. 7347–7355, 1998. View at Scopus
  18. S. Zhou and B. Chu, “Self-assembly behavior of a diblock copolymer of poly(1-dihydroperfluorooctyl acrylate) and poly(vinyl acetate) in supercritical carbon dioxide,” Macromolecules, vol. 31, no. 22, pp. 7746–7755, 1998. View at Scopus
  19. C. Baysal, B. Erman, and B. Chu, “Conformational features of poly(1-dihydroperfluorooctyl acrylate) and poly(vinyl acetate) diblock oligomers in supercritical carbon dioxide,” Journal of Chemical Physics, vol. 114, no. 12, pp. 5444–5449, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. F. Triolo, A. Triolo, R. Triolo et al., “Critical micelle density for the self-assembly of block copolymer surfactants in supercritical carbon dioxide,” Langmuir, vol. 16, no. 2, pp. 416–421, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Nakano, M. Deguchi, K. Matsumoto, H. Matsuoka, and H. Yamaöka, “Self-assembly of poly(l,l-diethylsilabutane)-block-poly(2-hydroxyethyl methacrylate) block copolymer. 1. Micelle formation and micelle-unimer-reversed micelle transition by solvent composition,” Macromolecules, vol. 32, no. 22, pp. 7437–7443, 1999. View at Scopus
  22. E. D. Niemeyer and F. V. Bright, “The pH within PFPE reverse micelles formed in supercritical CO2,” Journal of Physical Chemistry B, vol. 102, no. 8, pp. 1474–1478, 1998. View at Scopus
  23. D. C. Steytler and J. D. Holmes, “Aggregation and solubilisation in near critical CO2 studied by scattering methods,” Current Opinion in Colloid and Interface Science, vol. 3, no. 3, pp. 299–304, 1998. View at Scopus
  24. E. Yoshida and A. Mineyama, “Synthesis of spherical particles by self-assembly of poly[2-(perfluorooctyl)ethyl acrylate-co-acrylic acid] in supercritical carbon dioxide,” Colloid and Polymer Science, vol. 286, no. 8-9, pp. 975–981, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Yoshida and A. Nagakubo, “Convenient synthesis of microspheres by self-assembly of random copolymers in supercritical carbon dioxide,” Colloid and Polymer Science, vol. 285, no. 4, pp. 441–447, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. E. Yoshida and A. Nagakubo, “Superhydrophobic surfaces of microspheres obtained by self-assembly of poly[2-(perfluorooctyl)ethyl acrylate-ran-2-(dimethylamino)ethyl acrylate] in supercritical carbon dioxide,” Colloid and Polymer Science, vol. 285, no. 11, pp. 1293–1297, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Kobayahshi, H. Uyama, I. Yamamoto, and Y. Matsumoto, “Preparation of monodispered poly(methyl methacrylate) particle in the size of mícron range,” Polymer Journal, vol. 22, no. 8, pp. 759–761, 1990. View at Scopus