About this Journal Submit a Manuscript Table of Contents
International Journal of Polymer Science
Volume 2012 (2012), Article ID 646578, 14 pages
http://dx.doi.org/10.1155/2012/646578
Research Article

Long-Term Biostability of Pet Vascular Prostheses

1Laboratoire de Physique et Mécanique Textiles, ENSISA, 11 rue des Frères Lumières, 68093 Mulhouse Cedex, France
2Textile Research Unit, High Technology Institute, Hadj Ali Soua, Ksar-Hellal 5070, Tunisia
3Laboratoire de Chimie Organique et Bio-organique, École Nationale Supérieure de Chimie de Mulhouse, Université de Haute Alsace, 68093 Mulhouse, France
4Department of Vascular Surgery, Les Hôpitaux Universitaires de Strasbourg, University of Strasbourg, 67000 Strasbourg, France

Received 22 July 2011; Revised 8 November 2011; Accepted 16 November 2011

Academic Editor: Haojun Liang

Copyright © 2012 Florence Dieval et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. B. Voorhees, A. Jorretski, and A. H. Blakemore, “The use of tubes construted from vinyon “N” in cloth bridging arterial defects: a preliminary report,” Annals of Surgery, vol. 135, no. 2, pp. 332–336, 1952.
  2. N. Chakfé, F. Dieval, G. Riepe et al., “Influence of the textile structure on the degradation of explanted aortic endoprostheses,” European Journal of Vascular and Endovascular Surgery, vol. 27, no. 1, pp. 33–41, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. N. Chakfé, G. Riepe, F. Dieval et al., “Longitudinal ruptures of polyester knitted vascular prostheses,” Journal of Vascular Surgery, vol. 33, no. 5, pp. 1015–1021, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. N. Chakfé, F. Dieval, F. Thaveau, et al., “Aneurysm of expanded polyetrafluoroethylene vascular graft: an ultrastructural analysis,” European Journal of Vascular and Endovascular Surgery, vol. 25, pp. 360–366, 2003.
  5. G. E. Sweet and J. P. Bell, “Chemical degradative stress cracking of poly (ethylene terephthalate) fibers,” Journal of Polymer Science, vol. 16, no. 11, pp. 2057–2077, 1978. View at Scopus
  6. J. G. Sladen, A. N. Gerein, and R. T. Miyagishima, “Late rupture of prosthetic aortic grafts. Presentation and management,” American Journal of Surgery, vol. 153, no. 5, pp. 453–458, 1987. View at Scopus
  7. M. Batt, M. King, and R. Guidoin, “Mechanical fatigue in a polyester arterial prosthesis,” Presse Medicale, vol. 13, no. 33, pp. 1997–2000, 1984. View at Scopus
  8. A. Conix, “On the molecular-weight determination of poly(ethylene terephthalate),” Macromolecular Chemistry and Physics, vol. 26, no. 1, pp. 226–235, 1958.
  9. H. A. Pohl, “Determination of carboxyl end groups in a polyester, polyethylene terephthalate,” Analytical Chemistry, vol. 26, no. 10, pp. 1614–1616, 1954. View at Scopus
  10. M. J. Maurice and F. Huizinga, “The determination of carboxyl groups in polyethylene terephthalate,” Analytica Chimica Acta, vol. 22, pp. 363–368, 1960. View at Scopus
  11. R. Guidoin and N. Chakfé, “Aneurysmal deterioration of arterial substitutes,” in Current Therapy in Vascular Surgery, C. B. Ernst, J. C. Stanley, and B. C. Decker, Eds., pp. 324–328, BC Decker, Toronto, Canada, 1990.
  12. K. Berger and L. R. Sauvage, “Late fiber deterioration in Dacron® arterial grafts,” Annals of Surgery, vol. 193, no. 4, pp. 477–491, 1981. View at Scopus
  13. D. B. Nunn, M. H. Freeman, and P. C. Hudgins, “Postoperative alterations in size of dacron aortic grafts. An ultrasonic evaluation,” Annals of Surgery, vol. 189, no. 6, pp. 741–745, 1979. View at Scopus
  14. B. Pourdeyhimi and D. Wagner, “On the correlation between the failure of vascular grafts and their structural and material properties: a critical analysis,” Journal of Biomedical Materials Research, vol. 20, no. 3, pp. 375–409, 1986. View at Scopus
  15. F. Diéval, D. Mathieu, and B. Durand, “Influence of textile structure on longitudinal ruptures' localization of the vascular prostheses,” Textile Research Journal, vol. 78, no. 5, pp. 427–438, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. R. M. Blumenberg and M. L. Gelfand, “Failure of knitted Dacron as an arterial prosthesis,” Surgery, vol. 81, no. 5, pp. 493–496, 1977. View at Scopus
  17. A. Trippestad, “Late rupture of knitted Dacron double velour arterial prostheses,” Acta Chirurgica Scandinavica, vol. 151, no. 4, pp. 391–395, 1985. View at Scopus
  18. P. A. Cooke, P. A. Nobis, and R. J. Stoney, “Dacron aortic graft failure,” Archives of Surgery, vol. 108, no. 1, pp. 101–103, 1974. View at Scopus
  19. J. J. Yashar, M. H. Richman, J. Dyckman, et al., “Failure of Dacron prosthesis cause by structural defect,” Surgery, vol. 84, no. 5, pp. 659–663, 1978.
  20. R. C. Nucho and W. A. Gryboski, “Aneurysms of a double velour aortic graft,” Archives of Surgery, vol. 119, no. 10, pp. 1182–1184, 1984. View at Scopus
  21. M. T. F. D. Vrancken Peeters, A. Voorwinde, A. J. C. MacKaay, and R. M. J. M. Butzelaar, “Late rupture of femoropopliteal Dacron grafts: a rare complication,” European Journal of Vascular and Endovascular Surgery, vol. 11, no. 2, pp. 243–246, 1996. View at Publisher · View at Google Scholar · View at Scopus
  22. S. E. Wilson, R. Krug, G. Mueller, and L. Wilson, “Late disruption of Dacron aortic grafts,” Annals of Vascular Surgery, vol. 11, no. 4, pp. 383–386, 1997. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Riepe, J. Loos, H. Imig et al., “Long-term in vivo alterations of polyester vascular grafts in humans,” European Journal of Vascular and Endovascular Surgery, vol. 13, no. 6, pp. 540–548, 1997. View at Publisher · View at Google Scholar · View at Scopus
  24. F. Dieval, N. Chakfé, L. Wang et al., “Mechanisms of rupture of knitted polyester vascular prostheses: an in vitro analysis of virgin prostheses,” European Journal of Vascular and Endovascular Surgery, vol. 26, no. 4, pp. 429–436, 2003. View at Publisher · View at Google Scholar
  25. E. W. Fischer, H. Goddar, and G. F. Schmidt, “Détermination du degré de cristallinité des polymères tirés par des mesures de densité,” Journal of Polymer Science Part B, vol. 7, no. 1, pp. 37–45, 1969.
  26. C. Sammon, J. Yarwood, and N. Everall, “FT-IR study of the effect of hydrolytic degradation on the structure of thin PET films,” Polymer Degradation and Stability, vol. 67, no. 1, pp. 149–158, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. A. K. Jain and V. B. Gupta, “Infrared spectroscopic study of molecular orientation in heat-set poly (ethylene terephthalate) yarn using attenuated total reflection technique,” Journal of Applied Polymer Science, vol. 41, no. 11-12, pp. 2931–2939, 1990. View at Scopus
  28. J. R. Atkinson, F. Biddlestone, and J. N. Hay, “An investigation of glass formation and physical ageing in poly(ethylene terephthalate) by FT-IR spectroscopy,” Polymer, vol. 41, no. 18, pp. 6965–6968, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. Z. Zhu and M. J. Kelley, “IR spectroscopic investigation of the effect of deep UV irradiation on PET films,” Polymer, vol. 46, no. 20, pp. 8883–8891, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Dannoux, P. Cassagnau, and A. Michel, “Synthesis of oligoester α,ω-diols by alcoholysis of PET through the reactive extrusion process,” Canadian Journal of Chemical Engineering, vol. 80, no. 6, pp. 1075–1082, 2002. View at Scopus
  31. W. Tang, N. S. Murthy, F. Mares, M. E. McDonnell, and S. A. Curran, “Poly(ethylene terephthalate)-poly(caprolactone) block copolymer. I. Synthesis, reactive extrusion, and fiber morphology,” Journal of Applied Polymer Science, vol. 74, no. 7, pp. 1858–1867, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. A. M. Kenwright, S. K. Peace, R. W. Richards, A. Bunn, and W. A. MacDonald, “End group modification in poly(ethylene terephthalate),” Polymer, vol. 40, no. 8, pp. 2035–2040, 1999. View at Publisher · View at Google Scholar · View at Scopus
  33. B. J. Holland and J. N. Hay, “Analysis of comonomer content and cyclic oligomers of poly(ethylene terephthalate),” Polymer, vol. 43, no. 6, pp. 1797–1804, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Tate and H. Narusawa, “Thermal degradation and melt viscosity of ultra-high-molecular-weight poly(ethylene terephthalate),” Polymer, vol. 37, no. 9, pp. 1583–1587, 1996. View at Publisher · View at Google Scholar · View at Scopus
  35. B. J. Holland and J. N. Hay, “The thermal degradation of PET and analogous polyesters measured by thermal analysis-Fourier transform infrared spectroscopy,” Polymer, vol. 43, no. 6, pp. 1835–1847, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. H. A. Lecomte and J. J. Liggat, “Degradation mechanism of diethylene glycol units in a terephthalate polymer,” Polymer Degradation and Stability, vol. 91, no. 4, pp. 681–689, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. Z. Yin, C. Koulic, C. Pagnoulle, and R. Jérôme, “Controlled synthesis of anthracene-labeled ω-amine polystyrene to be used as a probe for interfacial reaction with mutually reactive PMMA,” Macromolecular Chemistry and Physics, vol. 203, no. 14, pp. 2021–2028, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. S. C. Jun, H. Y. Ji, H. J. Won, W. K. Suk, H. Wan, and I. Y. Dong, “Cyclization routes for formation of cyclic oligomers in poly(ethylene terephthalate),” Macromolecular Chemistry and Physics, vol. 202, no. 7, pp. 998–1003, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. S. P. Rwei and S. K. Ni, “Formation, characterization, and prevention of dust generated during fiber or fabric processing of PET materials,” Textile Research Journal, vol. 74, no. 7, pp. 581–586, 2004. View at Scopus
  40. S. S. Hosseini, S. Taheri, A. Zadhoush, and A. Mehrabani-Zeinabad, “Hydrolytic degradation of poly(ethylene terephthalate),” Journal of Applied Polymer Science, vol. 103, no. 4, pp. 2304–2309, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Al-AbdulRazzak, E. A. Lofgren, and S. A. Jabarin, “End-group determination in poly(ethylene terephthalate) by infrared spectroscopy,” Polymer International, vol. 51, no. 2, pp. 174–182, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. Y. Ma, U. S. Agarwal, J. A. J. M. Vekemans, and D. J. Sikkema, “NMR based determination of minute acid functionality: end-groups in Pet,” Polymer, vol. 44, no. 16, pp. 4429–4434, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. A. O'Neill and A. Cavaco-Paulo, “Monitoring biotransformations in polyesters,” Biocatalysis and Biotransformation, vol. 22, no. 5-6, pp. 353–356, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. K. H. Lee, C. Y. Won, C. C. Chu, and I. Gitsov, “Hydrolysis of biodegradable polymers by superoxide ions,” Journal of Polymer Science, Part A, vol. 37, no. 18, pp. 3558–3567, 1999. View at Publisher · View at Google Scholar · View at Scopus
  45. J. M. Maarek and R. Guidoin, “Molecular weight characterization of virgin and explanted polyester arterial prostheses,” Journal of Biomedical Materials Research, vol. 18, no. 8, pp. 881–894, 1984.
  46. K. Jordens, G. L. Wilkes, J. Janzen, D. C. Rohlfing, and M. B. Welch, “The influence of molecular weight and thermal history on the thermal, rheological, and mechanical properties of metallocene-catalyzed linear polyethylenes,” Polymer, vol. 41, no. 19, pp. 7175–7192, 2000. View at Publisher · View at Google Scholar · View at Scopus
  47. M. P. Grosvenor and J. N. Staniforth, “The effect of molecular weight on the rheological and tensile properties of poly(ε-caprolactone),” International Journal of Pharmaceutics, vol. 135, no. 1-2, pp. 103–109, 1996. View at Publisher · View at Google Scholar · View at Scopus
  48. E. Richaud and J. Verdu, VieiIlissement chimique des polymères. Mécanismes de degradation. Techniques de l‘ingenieur, AM3151, January 201.