About this Journal Submit a Manuscript Table of Contents
International Journal of Polymer Science
Volume 2012 (2012), Article ID 684278, 14 pages
http://dx.doi.org/10.1155/2012/684278
Review Article

Preparation of Ionic Silsesquioxanes with Regular Structures and Their Hybridization

1Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
2Functional Geomaterials Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan

Received 19 June 2012; Accepted 22 August 2012

Academic Editor: Maki Itoh

Copyright © 2012 Yoshiro Kaneko et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. H. Baney, M. Itoh, A. Sakakibara, and T. Suzuki, “Silsesquioxanes,” Chemical Reviews, vol. 95, no. 5, pp. 1409–1430, 1995. View at Publisher · View at Google Scholar · View at Scopus
  2. D. A. Loy, B. M. Baugher, C. R. Baugher, D. A. Schneider, and K. Rahimian, “Substituent effects on the sol-gel chemistry of organotrialkoxysilanes,” Chemistry of Materials, vol. 12, no. 12, pp. 3624–3632, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Choi, J. Harcup, A. F. Yee, Q. Zhu, and R. M. Laine, “Organic/inorganic hybrid composites from cubic silsesquioxanes,” Journal of the American Chemical Society, vol. 123, no. 46, pp. 11420–11430, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. K. M. Kim and Y. Chujo, “Organic-inorganic hybrid gels having functionalized silsesquioxanes,” Journal of Materials Chemistry, vol. 13, pp. 1384–1391, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. X. Yu, S. Zhong, X. Li et al., “A giant surfactant of polystyrene-(carboxylic acid-functionalized polyhedral oligomeric silsesquioxane) amphiphile with highly stretched polystyrene tails in micellar assemblies,” Journal of the American Chemical Society, vol. 132, no. 47, pp. 16741–16744, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. F. Wang, X. Lu, and C. He, “Some recent developments of polyhedral oligomeric silsesquioxane (POSS)-based polymeric materials,” Journal of Materials Chemistry, vol. 21, no. 9, pp. 2775–2782, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. F. J. Feher and K. D. Wyndham, “Amine and ester-substituted silsesquioxanes: synthesis, characterization and use as a core for starburst dendrimers,” Chemical Communications, no. 3, pp. 323–324, 1998. View at Publisher · View at Google Scholar · View at Scopus
  8. R. M. Laine, C. Zhang, A. Sellinger, and L. Viculis, “Polyfunctional cubic silsesquioxanes as building blocks for organic/inorganic hybrids,” Applied Organometallic Chemistry, vol. 12, no. 10-11, pp. 715–723, 1998. View at Scopus
  9. Z. Zhang, G. Liang, and T. Lu, “Synthesis and characterization of cage octa(aminopropylsilsesquioxane),” Journal of Applied Polymer Science, vol. 103, no. 4, pp. 2608–2614, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. D. B. Cordes, P. D. Lickiss, and F. Rataboul, “Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes,” Chemical Reviews, vol. 110, no. 4, pp. 2081–2173, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Tanaka, F. Ishiguro, and Y. Chujo, “POSS ionic liquid,” Journal of the American Chemical Society, vol. 132, no. 50, pp. 17649–17651, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Tanaka and Y. Chujo, “Advanced functional materials based on polyhedral oligomeric silsesquioxane (POSS),” Journal of Materials Chemistry, vol. 22, no. 5, pp. 1733–1746, 2012. View at Publisher · View at Google Scholar
  13. J. F. Brown Jr., L. H. Vogt Jr., and P. I. Prescott, “Double chain polymers of phenylsilsesquioxane,” Journal of the American Chemical Society, vol. 82, no. 23, pp. 6194–6195, 1960. View at Publisher · View at Google Scholar · View at Scopus
  14. J. F. Brown Jr., L. H. Vogt Jr., and P. I. Prescott, “Preparation and characterization of the lower equilibrated phenylsilsesquioxanes,” Journal of the American Chemical Society, vol. 86, no. 6, pp. 1120–1125, 1964. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Unno, S. Chang, and H. Matsumoto, “cis-trans-cis-tetrabromotetramethylcyclotetrasiloxane: a versatile precursor of ladder silsesquioxanes,” Bulletin of the Chemical Society of Japan, vol. 78, no. 6, pp. 1105–1109, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. X. Zhang, P. Xie, Z. Shen et al., “Confined synthesis of a cis-isotactic ladder polysilsesquioxane by using a π-stacking and h-bonding superstructure,” Angewandte Chemie—International Edition, vol. 45, no. 19, pp. 3112–3116, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Seki, T. Kajiwara, Y. Abe, and T. Gunji, “Synthesis and structure of ladder polymethylsilsesquioxanes from sila-functionalized cyclotetrasiloxanes,” Journal of Organometallic Chemistry, vol. 695, no. 9, pp. 1363–1369, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Abe and T. Gunji, “Oligo- and polysiloxanes,” Progress in Polymer Science, vol. 29, no. 3, pp. 149–182, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Unno, A. Suto, and H. Matsumoto, “Pentacyclic laddersiloxane,” Journal of the American Chemical Society, vol. 124, no. 8, pp. 1574–1575, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. A. N. Parikh, M. A. Schivley, E. Koo et al., “n-Alkylsiloxanes: from single monolayers to layered crystals. The formation of crystalline polymers from the hydrolysis of n-octadecyltrichlorosilane,” Journal of the American Chemical Society, vol. 119, no. 13, pp. 3135–3143, 1997. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Shimojima, Y. Sugahara, and K. Kuroda, “Inorganic-organic layered materials derived via the hydrolysis and polycondensation of trialkoxy(alkyl)silanes,” Bulletin of the Chemical Society of Japan, vol. 70, no. 11, pp. 2847–2853, 1997. View at Scopus
  22. S. Inagaki, S. Guan, T. Ohsuna, and O. Terasaki, “An ordered mesoporous organosilica hybrid material with a crystal-like wall structure,” Nature, vol. 416, no. 6878, pp. 304–307, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Kaneko, N. Iyi, K. Kurashima, T. Matsumoto, T. Fujita, and K. Kitamura, “Hexagonal-structured polysiloxane material prepared by sol-gel reaction of aminoalkyltrialkoxysilane without using surfactants,” Chemistry of Materials, vol. 16, no. 18, pp. 3417–3423, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Kaneko, N. Iyi, T. Matsumoto, and K. Kitamura, “Synthesis of rodlike polysiloxane with hexagonal phase by sol-gel reaction of organotrialkoxysilane monomer containing two amino groups,” Polymer, vol. 46, no. 6, pp. 1828–1833, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Kaneko and N. Iyi, “Sol-gel synthesis of rodlike polysilsesquioxanes forming regular higher-ordered nanostructure,” Zeitschrift für Kristallographie, vol. 222, no. 11, pp. 656–662, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Kaneko and N. Iyi, “Sol-gel synthesis of water-soluble polysilsesquloxanes with regular structures,” Kobunshi Ronbunshu, vol. 67, no. 5, pp. 280–287, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. E. S. Park, H. W. Ro, C. V. Nguyen, R. L. Jaffe, and D. Y. Yoon, “Infrared spectroscopy study of microstructures of poly(silsesquioxane)s,” Chemistry of Materials, vol. 20, no. 4, pp. 1548–1554, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Kaneko and N. Iyi, “Sol-gel synthesis of ladder polysilsesquioxanes forming chiral conformations and hexagonal stacking structures,” Journal of Materials Chemistry, vol. 19, no. 38, pp. 7106–7111, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Kaneko, H. Toyodome, and H. Sato, “Preparation of chiral ladder-like polysilsesquioxanes and their chiral induction to anionic dye compound,” Journal of Materials Chemistry, vol. 21, no. 41, pp. 16638–16641, 2011.
  30. H. Zhao, F. Sanda, and T. Masuda, “Transformation of helical sense of poly(N-propargylamides) controlled by competition between structurally different enantiomeric amino acids,” Macromolecules, vol. 37, no. 24, pp. 8888–8892, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. D. Franke, M. Vos, M. Antonietti, N. A. J. M. Sommerdijk, and C. F. J. Faul, “Induced supramolecular chirality in nanostructured materials: ionic self-assembly of perylene-chiral surfactant complexes,” Chemistry of Materials, vol. 18, no. 7, pp. 1839–1847, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Uchimura, Y. Watanabe, F. Araoka, J. Watanabe, H. Takezoe, and G. I. Konishi, “Development of laser dyes to realize low threshold in dye-doped cholesteric liquid crystal lasers,” Advanced Materials, vol. 22, no. 40, pp. 4473–4478, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Kano, H. Matsumoto, Y. Yoshimura, and S. Hashimoto, “Binding sites of pyrene and related compounds and chiral excimer formation in the cavities of cyclodextrins and branched cyclodextrins,” Journal of the American Chemical Society, vol. 110, no. 1, pp. 204–209, 1988. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Onouchi, T. Miyagawa, K. Morino, and E. Yashima, “Assisted formation of chiral porphyrin homoaggregates by an induced helical poly(phenylacetylene) template and their chiral memory,” Angewandte Chemie—International Edition, vol. 45, no. 15, pp. 2381–2384, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Ikeda, Y. Furusho, K. Okoshi et al., “A luminescent poly(phenylenevinylene)-amylose composite with supramolecular liquid crystallinity,” Angewandte Chemie—International Edition, vol. 45, no. 39, pp. 6491–6495, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Li, M. Numata, A. H. Bae, K. Sakurai, and S. Shinkai, “Self-assembly of supramolecular chiral insulated molecular wire,” Journal of the American Chemical Society, vol. 127, no. 13, pp. 4548–4549, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. Kaneko, M. Shoiriki, and T. Mizumo, “Preparation of cage-like octa(3-aminopropyl)silsesquioxane trifluoromethanesulfonate in higher yield with a shorter reaction time,” Journal of Materials Chemistry, vol. 22, no. 29, pp. 14475–14478, 2012. View at Publisher · View at Google Scholar
  38. A. Usuki, Y. Kojima, M. Kawasumi et al., “Synthesis of nylon 6-clay hybrid,” Journal of Materials Research, vol. 8, no. 5, pp. 1179–1184, 1993. View at Scopus
  39. Y. Chujo, “Organic-inorganic hybrid materials,” Current Opinion in Solid State and Materials Science, vol. 1, no. 6, pp. 806–811, 1996. View at Publisher · View at Google Scholar · View at Scopus
  40. Y. Kaneko, N. Iyi, T. Matsumoto, and K. Kitamura, “Preparation of higher-ordered inorganic-organic nanocomposite composed of rodlike cationic polysiloxane and polyacrylate,” Journal of Materials Chemistry, vol. 15, no. 15, pp. 1572–1575, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. K. Ohtsuka, “Preparation and properties of two-dimensional microporous pillared interlayered solids,” Chemistry of Materials, vol. 9, no. 10, pp. 2039–2050, 1997. View at Publisher · View at Google Scholar · View at Scopus
  42. J. T. Kloprogge, “Synthesis of smectites and porous pillared clay catalysts: a review,” Journal of Porous Materials, vol. 5, no. 1, pp. 5–41, 1998. View at Publisher · View at Google Scholar · View at Scopus
  43. Z. Ding, J. T. Kloprogge, R. L. Frost, G. Q. Lu, and H. Y. Zhu, “Porous clays and pillared clays-based catalysts. part 2: a review of the catalytic and molecular sieve applications,” Journal of Porous Materials, vol. 8, no. 4, pp. 273–293, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Ogawa, M. Takahashi, C. Kato, and K. Kuroda, “Oriented microporous film of tetramethylammonium pillared saponite,” Journal of Materials Chemistry, vol. 4, no. 4, pp. 519–523, 1994. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Pichowicz and R. Mokaya, “Stability of Pillared Clays: effect of compaction on the physicochemical properties of al-pillared clays,” Chemistry of Materials, vol. 16, no. 2, pp. 263–269, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Yamanaka, Y. Inoue, M. Hattori, F. Okumura, and M. Yoshikawa, “Preparation and properties of clays pillared with SiO2–TiO2 sol particles,” Bulletin of the Chemical Society of Japan, vol. 65, no. 9, pp. 2494–2500, 1992.
  47. T. J. Pinnavaia and G. W. Beall, Polymer-Clay Nanocomposites, John Wiley and Sons, Chichester, UK, 2000.
  48. Y. Kaneko, N. Iyi, T. Matsumoto, and K. Kitamura, “Preparation of a clay pillared with rodlike cationic polysiloxane,” Chemistry Letters, vol. 33, no. 11, pp. 1486–1487, 2004. View at Publisher · View at Google Scholar · View at Scopus