About this Journal Submit a Manuscript Table of Contents
International Journal of Polymer Science
Volume 2012 (2012), Article ID 852063, 10 pages
http://dx.doi.org/10.1155/2012/852063
Review Article

Polysilsesquioxanes for Gate-Insulating Materials of Organic Thin-Film Transistors

1Electronic Material Research Division, Osaka Municipal Technical Research Institute, Osaka 536-8553, Japan
2JST Innovation Plaza Osaka, Osaka 594-1131, Japan
3Department of Physics and Electronics, Osaka Prefecture University, Osaka 599-8531, Japan

Received 11 August 2012; Accepted 11 September 2012

Academic Editor: Yoshiro Kaneko

Copyright © 2012 Kimihiro Matsukawa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Sirringhaus, P. J. Brown, R. H. Friend et al., “Two-dimensional charge transport in self-organized, high-mobility conjugated polymers,” Nature, vol. 401, no. 6754, pp. 685–688, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Afzali, C. D. Dimitrakopoulos, and T. L. Breen, “High-performance, solution-processed organic thin film transistors from a novel pentacene precursor,” Journal of the American Chemical Society, vol. 124, no. 30, pp. 8812–8813, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Kawase, H. Sirringhaus, R. H. Friend, and T. Shimoda, “Inkjet printed via-hole interconnections and resistors for all-polymer transistor circuits,” Advanced Materials, vol. 13, no. 21, pp. 1601–1605, 2001. View at Publisher · View at Google Scholar
  4. H. Klauk, M. Halik, U. Zschieschang, G. Schmid, W. Radlik, and W. Weber, “High-mobility polymer gate dielectric pentacene thin film transistors,” Journal of Applied Physics, vol. 92, no. 9, p. 5259, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. J. A. Rogers, Z. Bao, A. Makhija, and P. Braun, “Printing process suitable for reel-to-reel production of high-performance organic transistors and circuits,” Advanced Materials, vol. 11, no. 9, pp. 741–745, 1999. View at Publisher · View at Google Scholar
  6. C. D. Sheraw, D. J. Gundlach, and T. N. Jockson, “Spin-on polymer gate dielectric for high performance organic thin film transistors,” Materials Research Society Symposium Proceedings, vol. 558, article 403, 2000. View at Publisher · View at Google Scholar
  7. T. B. Singh, F. Meghdadi, S. Günes et al., “High-performance ambipolar pentacene organic field-effect transistors on poly(vinyl alcohol) organic gate dielectric,” Advanced Materials, vol. 17, no. 19, pp. 2315–2320, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Knipp, R. A. Street, A. Vokel, and J. Ho, “Pentacene thin film transistors on inorganic dielectrics: morphology, structural properties, and electronic transport,” Journal of Applied Physics, vol. 93, no. 1, article 347, 9 pages, 2003. View at Publisher · View at Google Scholar
  9. J. Wang, X. Yan, Y. Xu, J. Zhang, and D. Yan, “Organic thin-film transistors having inorganic/organic double gate insulators,” Applied Physics Letters, vol. 85, no. 22, article 5424, 3 pages, 2004. View at Publisher · View at Google Scholar
  10. A. Facchetti, M. H. Yoon, and T. J. Marks, “Gate dielectrics for organic field-effect transistors: new opportunities for organic electronics,” Advanced Materials, vol. 17, no. 14, pp. 1705–1725, 2005. View at Publisher · View at Google Scholar
  11. Z. Bao, V. Kuck, J. A. Rogers, and M. A. Paczkowski, “Silsesquioxane resins as high-performance solution processible dielectric materials for organic transistor applications,” Advanced Functional Materials, vol. 12, no. 8, pp. 526–531, 2002. View at Publisher · View at Google Scholar
  12. P. Liu, Y. Wu, Y. Li, B. S. Ong, and S. Zhu, “Enabling gate dielectric design for all solution-processed, high-performance, flexible organic thin-film transistors,” Journal of the American Chemical Society, vol. 128, no. 14, pp. 4554–4555, 2006. View at Publisher · View at Google Scholar
  13. Y. Wu, P. Lin, and B. S. Ong, “Organic thin-film transistors with poly(methyl silsesquioxane) modified dielectric interfaces,” Applied Physics Letters, vol. 89, no. 1, Article ID 013505, 2006. View at Publisher · View at Google Scholar
  14. S. Jeong, D. Kim, S. Lee, B. K. Park, and J. Moon, Applied PhysicsLetters, vol. 89, Article ID 092101, 2006.
  15. S. Jeong, D. Kim, S. Lee, B. K. Park, and J. Moon, “Influence of silanol groups on the electrical performance of organic thin-film transistors utilizing organosiloxane-based organic-inorganic hybrid dielectrics,” Nanotechnology, vol. 18, no. 2, Article ID 025204, 2007. View at Publisher · View at Google Scholar
  16. K. Tomatsu, T. Hamada, T. Nagase et al., “Fabrication and characterization of poly(3-hexylthiophene)-based field-effect transistors with silsesquioxane gate insulators,” Japanese Journal of Applied Physics, vol. 47, no. 4, pp. 3196–3199, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Nagase, T. Hamada, K. Tomatsu et al., “Low-temperature processable organic-inorganic hybrid gate dielectrics for solution-based organic field-effect transistors,” Advanced Materials, vol. 22, no. 42, pp. 4706–4710, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Y. Yang, S. H. Kim, K. Shin, H. Jeon, and C. E. Park, “Low-voltage pentacene field-effect transistors with ultrathin polymer gate dielectrics,” Applied Physics Letters, vol. 88, no. 17, Article ID 173507, 3 pages, 2006. View at Publisher · View at Google Scholar
  19. S. Uemura, “Low-frequency dielectric behavior of poly(vinylidene fluoride),” Journal of Polymer Science, vol. 12, no. 6, pp. 1177–1188, 1974. View at Publisher · View at Google Scholar
  20. J. Veres, S. Ogier, G. Lloyd, and D. de Leeuw, “Gate insulators in organic field-effect transistors,” Chemistry of Materials, vol. 16, no. 23, pp. 4543–4555, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Salleo, M. L. Chabinyc, M. S. Yang, and R. A. Street, “Polymer thin-film transistors with chemically modified dielectric interfaces,” Applied Physics Letters, vol. 81, no. 23, pp. 4383–4385, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. K. P. Pernstich, S. Haas, D. Oberhoff et al., “Threshold voltage shift in organic field effect transistors by dipole monolayers on the gate insulator,” Journal of Applied Physics, vol. 96, no. 11, pp. 6431–6438, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Yamazaki, T. Hamada, K. Tomatsu et al., “Electrical characteristics of polymer field-effect transistors with poly(methylsilsesquioxane) gate dielectrics on plastic substrates,” Thin Solid Films, vol. 517, no. 4, pp. 1343–1345, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Hamada, S. Yamazaki, T. Nagase et al., “Chemical design of polysilsesquioxane as a gate insulator for organic thin-film transistors,” in Proceedings of the 15th International Display Workshops (IDW '08), pp. 1665–1668, December 2008. View at Scopus
  25. T. Hamada, T. Nagase, T. Kobayashi, K. Matsukawa, and H. Naito, “Effective control of surface property on poly(silsesquioxane) films by chemical modification,” Thin Solid Films, vol. 517, no. 4, pp. 1335–1339, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Watanabe, K. Muro, T. Hamada et al., “Surface modification of organic-inorganic hybrid insulator for printable organic field-effect transistors,” Chemistry Letters, vol. 38, no. 1, pp. 34–35, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Hamada, T. Nagase, M. Watanabe, S. Watase, H. Naito, and K. Matsukawa, “Preparation and dielectric property of photo-curable polysilsesquioxane hybrids,” Journal of Photopolymer Science and Technology, vol. 21, no. 2, pp. 319–320, 2008. View at Publisher · View at Google Scholar · View at Scopus