About this Journal Submit a Manuscript Table of Contents
International Journal of Polymer Science
Volume 2012 (2012), Article ID 907049, 8 pages
http://dx.doi.org/10.1155/2012/907049
Research Article

Physical Properties of Soy-Phosphate Polyol-Based Rigid Polyurethane Foams

1Department of Biological Engineering, University of Missouri-Columbia, 248 AE Building, Columbia, MO 65211, USA
2Department of Chemical Engineering, University of Missouri-Columbia, W2033 Lafferre Hall, Columbia, MO 65211, USA

Received 28 October 2011; Accepted 21 December 2011

Academic Editor: Jose Ramon Leiza

Copyright © 2012 Hongyu Fan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Avar, “Polyurethanes (PU),” Kunststoffe International, vol. 10, pp. 123–127, 2008.
  2. G. Woods, The ICI Polyurethane Book, John Wiley & Sons, New York, NY, USA, 2nd edition, 1990.
  3. M. Szycher, Szycher’s Handbook of Polyurethanes, CRC Press, Florida, Fla, USA, 1999.
  4. H. Ulrich, Introduction to Industrial Polymers, Hanser, New York, NY, USA, 1982.
  5. Economic Research Service, USDA, “Soybeans and oil crops: market outlook,” 2010, http://www.ers.usda.gov/Briefing/SoybeansOilcrops/2010_19baseline.htm.
  6. R. Wool and X. Sun, Bio-Based Polymers and Composites, Elsevier Academic Press, Mass, USA, 2005.
  7. A. Guo, D. Demydov, W. Zhang, and Z. S. Petrovic, “Polyols and polyurethanes from hydroformylation of soybean oil,” Journal of Polymers and the Environment, vol. 10, no. 1-2, pp. 49–52, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. Z. Petrovic, I. Javni, A. Guo, and W. Zhang, “Method of making natural oil-based polyols and polyurethanes therefrom,” US Patent no 6,433,121, 2002.
  9. Z. Lozada, G. J. Suppes, F. H. Hsieh, A. Lubguban, and Y. C. Tu, “Preparation of polymerized soybean oil and soy-based polyols,” Journal of Applied Polymer Science, vol. 112, no. 4, pp. 2127–2135, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. A. A. Lubguban, Y. C. Tu, Z. R. Lozada, F. H. Hsieh, and G. J. Suppes, “Noncatalytic polymerization of ethylene glycol and epoxy molecules for rigid polyurethane foam applications,” Journal of Applied Polymer Science, vol. 112, no. 4, pp. 2185–2194, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. Z. S. Petrović, W. Zhang, and I. Javni, “Structure and properties of polyurethanes prepared from triglyceride polyols by ozonolysis,” Biomacromolecules, vol. 6, no. 2, pp. 713–719, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. S. S. Narine, X. Kong, L. Bouzidi, and P. Sporns, “Physical properties of polyurethanes produced from polyols from seed oils: I. Elastomers,” Journal of the American Oil Chemists' Society, vol. 84, no. 1, pp. 55–63, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. C. T. Hou, “Microbial oxidation of unsaturated fatty acids,” Advances in Applied Microbiology, vol. 41, pp. 1–23, 1995.
  14. Z. S. Petrović, L. Yang, A. Zlatanić, W. Zhang, and I. Javni, “Network structure and properties of polyurethanes from soybean oil,” Journal of Applied Polymer Science, vol. 105, no. 5, pp. 2717–2727, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. L. L. Monteavaro, E. O. Da Silva, A. P. O. Costa, D. Samios, A. E. Gerbase, and C. L. Petzhold, “Polyurethane networks from formiated soy polyols: synthesis and mechanical characterization,” Journal of the American Oil Chemists' Society, vol. 82, no. 5, pp. 365–371, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. J. John, M. Bhattacharya, and R. B. Turner, “Characterization of polyurethane foams from soybean oil,” Journal of Applied Polymer Science, vol. 86, no. 12, pp. 3097–3107, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Knothe and J. Derksen, Recent Developments in the Synthesis of Fatty Acid Derivatives, AOCS Press, Ill, USA, 1999.
  18. A. Lubguban, Z. R. Lozada, Y. Tu, H. Fan, F. Hsieh, and GJ. I. Suppes, “Isocyanate reduction by epoxide substitution of alcohols for polyurethane bioelastomer synthesis,” International Journal of Polymer Science, vol. 2011, Article ID 936973, 8 pages, 2011. View at Publisher · View at Google Scholar
  19. Y. Guo, V. M. Mannari, P. Patel, and J. L. Massingill, “Self-emulsifiable soybean oil phosphate ester polyols for low-VOC corrosion resistant coatings,” Journal of Coatings Technology Research, vol. 3, no. 4, pp. 327–331, 2006. View at Scopus
  20. Y. Guo, J. H. Hardesty, V. M. Mannari, and J. L. Massingill, “Hydrolysis of epoxidized soybean oil in the presence of phosphoric acid,” Journal of the American Oil Chemists' Society, vol. 84, no. 10, pp. 929–935, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Thirumal, D. Khastgir, N. K. Singha, B. S. Manjunath, and Y. P. Naik, “Effect of foam density on the properties of water blown rigid polyurethane foam,” Journal of Applied Polymer Science, vol. 108, no. 3, pp. 1810–1817, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. F. Kurt and H. James, Plastic Foams, Marcel Dekker, New York, NY, USA, 1973.
  23. S. H. Goods, C. L. Neuschwanger, C. C. Henderson, and D. M. Skala, “Mechanical properties of CRETE, a polyurethane foam,” Journal of Applied Polymer Science, vol. 68, no. 7, pp. 1045–1055, 1998. View at Scopus
  24. A. Campanella, L. M. Bonnaillie, and R. P. Wool, “Polyurethane foams from soyoil-based polyols,” Journal of Applied Polymer Science, vol. 112, no. 4, pp. 2567–2578, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. I. Javni, W. Zhang, and Z. S. Petrović, “Effect of different isocyanates on the properties of soy-based polyurethanes,” Journal of Applied Polymer Science, vol. 88, no. 13, pp. 2912–2916, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. T. W. Pechar, G. L. Wilkes, B. Zhou, and N. Luo, “Characterization of soy-based polyurethane networks prepared with different diisocyanates and their blends with petroleum-based polyols,” Journal of Applied Polymer Science, vol. 106, no. 4, pp. 2350–2362, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Guo, I. Javni, and Z. Petrovic, “Rigid polyurethane foams based on soybean oil,” Journal of Applied Polymer Science, vol. 77, no. 2, pp. 467–473, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. C. Tu, H. Fan, G. J. Suppes, and F. H. Hsieh, “Physical properties of water-blown rigid polyurethane foams containing epoxidized soybean oil in different isocyanate indices,” Journal of Applied Polymer Science, vol. 114, no. 5, pp. 2577–2583, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. Dow Plastics, Product Information of PAPI 27 Polymeric MDI, The Dow Chemical Company, Midland, Mich, USA, 2001.
  30. Dow Plastics, PProduct Information of VORANOL 490, The Dow Chemical Company, Midland, Mich, USA, 2001.
  31. ASTM Designation: D1622-08, Standard Test Method for Apparent Density of Rigid Cellular Plastics, 2008.
  32. ASTM Designation: C518-10, Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus, 2010.
  33. ASTM Designation: D1621-10, Standard Test Method for Compressive Properties of Rigid Cellular Plastics, 2010.
  34. H. Youn, J. Lee, and S Choi., “Properties of rigid polyurethane foams blown by HFC-365mfc and distilled water,” Journal of Industrial and Engineering Chemistry, vol. 13, no. 7, pp. 1076–1082, 2007.
  35. S. S. Narine, X. Kong, L. Bouzidi, and P. Sporns, “Physical properties of polyurethanes produced from polyols from seed oils: II. Foams,” Journal of the American Oil Chemists' Society, vol. 84, no. 1, pp. 65–72, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Thirumal, D. Khastgir, N. K. Singha, B. S. Manjunath, and Y. P. Naik, “Mechanical, morphological and thermal properties of rigid polyurethane Foam: effect of chain extender, polyol and blowing agent,” Cellular Polymers, vol. 28, no. 2, pp. 145–158, 2009. View at Scopus
  37. Y. C. Tu, G. J. Suppes, and F. H. Hsieh, “Water-blown rigid and flexible polyurethane foams containing epoxidized soybean oil triglycerides,” Journal of Applied Polymer Science, vol. 109, no. 1, pp. 537–544, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. C. Tu, P. Kiatsimkul, G. Suppes, and F. H. Hsieh, “Physical properties of water-blown rigid polyurethane foams from vegetable oil-based polyols,” Journal of Applied Polymer Science, vol. 105, no. 2, pp. 453–459, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Guo, W. Zhang, and Z. S. Petrovic, “Structure-property relationships in polyurethanes derived from soybean oil,” Journal of Materials Science, vol. 41, no. 15, pp. 4914–4920, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. R. Herrington and K. Hock, Dow Polyurethane Flexible Foams, The Dow Chemical Company, Midland, Mich, USA, 2nd edition, 1997.
  41. A. Biedermann, C. Kudoke, A. Merten et al., “Analysis of heat transfer mechanisms in polyurethane rigid foam,” Journal of Cellular Plastics, vol. 37, no. 6, pp. 467–483, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. En.wikipedica.org, “List of thermal conductivities,” 2010, http://en.wikipedia.org/wiki/List_of_thermal_conductivities/.
  43. M. C. Hawkins, B. O'Toole, and D. Jackovich, “Cell morphology and mechanical properties of rigid polyurethane foam,” Journal of Cellular Plastics, vol. 41, no. 3, pp. 267–285, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. H. Jin, W. Y. Lu, S. Scheffel, M. K. Neilsen, and T. D. Hinnerichs, “Characterization of mechanical behavior of polyurethane foams using digital image correlation,” in Proceedings of the ASME International Mechanical Engineering Congress and Exposition (IMECE '05), vol. 256, pp. 293–298, Orlando, Fla, USA, November 2005. View at Scopus
  45. H. Lim, S. H. Kim, and B. K. Kim, “Effects of the hydroxyl value of polyol in rigid polyurethane foams,” Polymers for Advanced Technologies, vol. 19, no. 12, pp. 1729–1734, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. D. V. Dounis and G. L. Wilkes, “Effect of toluene diisocyanate index on morphology and physical properties of flexible slabstock polyurethane foams,” Journal of Applied Polymer Science, vol. 66, no. 13, pp. 2395–2408, 1997. View at Scopus