About this Journal Submit a Manuscript Table of Contents
International Journal of Polymer Science
Volume 2012 (2012), Article ID 972541, 10 pages
Research Article

Soluble Polyimides Bearing Long-Chain Alkyl Groups on Their Side Chain via Polymer Reaction

Department of Biochemistry and Applied Chemistry, Kurume National College of Technology, Komorino 1-1-1, Kurume, Fukuoka 830-8555, Japan

Received 31 July 2012; Accepted 24 September 2012

Academic Editor: Yoshiki Chujo

Copyright © 2012 Yusuke Tsuda et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Novel soluble polyimides having long-chain alkyl groups on their side chain were synthesized via polymer reaction with the polyimides having phenolic OH groups and 3,4,5-tris(dodecyloxy)benzoic acid (12GA) using N,N′-dicyclohexylcarbodiimide (DCC) as a dehydration reagent. The polyimides having phenolic OH groups were synthesized from the tetracarboxylic dianhydrides such as 5-(2,5-dioxotetrahydrofuryl)-3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride (cyclohexene-DA), 4,4′-hexafluoroisopropylidendi(phthalic anhydride) (6FDA), and 3,3′,4,4′-diphenylsulfone tetracarboxylic dianhydride (DSDA) and aromatic diamines such as 4,4′-diamino-3,3′-dihydroxybiphenyl (HAB). The polymer reactions were carried out in NMP and the progresses of polymer reactions were quantitatively monitored by 1H NMR measurements (conversion; 12.2–98.7%). The obtained polyimides bearing long-chain alkyl groups have enough molecular weights, good film-forming ability, good solubility for various organic solvents, and enough thermal stability. The water contact angles of the polyimide films were investigated, and it is noted that the introduction of long-chain alkyl groups increases the hydrophobicity of polyimide surface. These polyimides are expected to be applicable as the functional materials for microelectronics such as the alignment layers of LCDs.