International Journal of Polymer Science http://www.hindawi.com The latest articles from Hindawi Publishing Corporation © 2014 , Hindawi Publishing Corporation . All rights reserved. Physicochemical Characterization of Thermally Treated Chitosans and Chitosans Obtained by Alkaline Deacetylation Tue, 22 Jul 2014 07:48:53 +0000 http://www.hindawi.com/journals/ijps/2014/853572/ The thermal depolymerization of chitosan and alkaline deacetylation of chitin were characterized by measurement of viscosity, gel permeation chromatography (GPC), potentiometric titration (PT), and proton nuclear magnetic resonance spectroscopy ( NMR). The depolymerization rates (DR) measured by kinematic viscosity (KV), apparent viscosity (AV), and GPC (Mw) until 4 h of treatment were , , and %  and for 5 to 10 h of treatment they decreased slowly to produce of , , and % . The mole fraction of N-acetylglucosamine residues of chitosans was not modified after 10 h of thermal treatment at 100°C. The initial values of chitosan without any treatment were and and of chitosan treated for 10 h were and . The variables used to characterize the depolymerization process showed a good correlation. Six hours of thermal treatment as sufficient to obtain chitosans with a molar mass 90% smaller than that of the control chitosan without treatment. Ana Maria de Oliveira, Telma Teixeira Franco, and Enio Nazaré de Oliveira Junior Copyright © 2014 Ana Maria de Oliveira et al. All rights reserved. Using Polymeric Scaffolds for Vascular Tissue Engineering Mon, 21 Jul 2014 00:00:00 +0000 http://www.hindawi.com/journals/ijps/2014/689390/ With the high occurrence of cardiovascular disease and increasing numbers of patients requiring vascular access, there is a significant need for small-diameter (<6 mm inner diameter) vascular graft that can provide long-term patency. Despite the technological improvements, restenosis and graft thrombosis continue to hamper the success of the implants. Vascular tissue engineering is a new field that has undergone enormous growth over the last decade and has proposed valid solutions for blood vessels repair. The goal of vascular tissue engineering is to produce neovessels and neoorgan tissue from autologous cells using a biodegradable polymer as a scaffold. The most important advantage of tissue-engineered implants is that these tissues can grow, remodel, rebuild, and respond to injury. This review describes the development of polymeric materials over the years and current tissue engineering strategies for the improvement of vascular conduits. Alida Abruzzo, Calogero Fiorica, Vincenzo Davide Palumbo, Roberta Altomare, Giuseppe Damiano, Maria Concetta Gioviale, Giovanni Tomasello, Mariano Licciardi, Fabio Salvatore Palumbo, Gaetano Giammona, and Attilio Ignazio Lo Monte Copyright © 2014 Alida Abruzzo et al. All rights reserved. Influence of Organoboron Compounds on Ethylene Polymerization Using Cp2ZrCl2/MAO as Catalyst System Tue, 15 Jul 2014 10:23:14 +0000 http://www.hindawi.com/journals/ijps/2014/519203/ Organoboron compounds of nonionic and ionic nature, tris(pentafluorophenyl)borane, and N,N-dimethylanilinium tetra(pentafluorophenyl)borate were evaluated to act in conjunction with MAO as activators on ethylene polymerization by using the catalyst Cp2ZrCl2. A decrease on the catalytic activity was observed in both cases in relation with a reference polyethylene which was synthesized in absence of any organoboron compound. An increase on the crystallinity degree and molecular weight, as well as an improvement in thermal and dynamic-mechanical properties, was observed in polyethylenes synthetized in presence of tris(pentafluorophenyl)borane. A low density polyethylene with improved thermal stability was obtained when N,N-dimethylanilinium tetra(pentafluorophenyl)borate was employed as activator. Luis Alexandro Valencia López, Francisco Javier Enríquez-Medrano, Ricardo Mendoza Carrizales, Florentino Soriano Corral, Adali Castañeda Facio, and Ramón Enrique Díaz de León Gómez Copyright © 2014 Luis Alexandro Valencia López et al. All rights reserved. Effects of Inorganic Fillers on the Thermal and Mechanical Properties of Poly(lactic acid) Tue, 15 Jul 2014 00:00:00 +0000 http://www.hindawi.com/journals/ijps/2014/827028/ Addition of filler to polylactic acid (PLA) may affect its crystallization behavior and mechanical properties. The effects of talc and hydroxyapatite (HA) on the thermal and mechanical properties of two types of PLA (one amorphous and one semicrystalline) have been investigated. The composites were prepared by melt blending followed by injection molding. The molecular weight, morphology, mechanical properties, and thermal properties have been characterized by gel permeation chromatography (GPC), scanning electron microscope (SEM), instron tensile tester, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). It was found that the melting blending led to homogeneous distribution of the inorganic filler within the PLA matrix but decreased the molecular weight of PLA. Regarding the filler, addition of talc increased the crystallinity of PLA, but HA decreased the crystallinity of PLA. The tensile strength of the composites depended on the crystallinity of PLA and the interfacial properties between PLA and the filler, but both talc and HA filler increased the toughness of PLA. Xingxun Liu, Tongxin Wang, Laurence C. Chow, Mingshu Yang, and James W. Mitchell Copyright © 2014 Xingxun Liu et al. All rights reserved. Utilization of Zinc Dust for a Core Monomer 2-Bromo-3-hexylthien-5-ylzinc Bromide: Its Synthesis and Application for the Preparation of Regioregular Poly(3-hexylthiophene) Wed, 09 Jul 2014 08:44:55 +0000 http://www.hindawi.com/journals/ijps/2014/847309/ The oxidative insertion of readily available zinc dust into the carbon-bromine bond of 2,5-dibromo-3-hexylthiophene was efficiently achieved to provide 2-bromo-3-hexylthien-5-ylzinc bromide (I), which was utilized for the preparation of highly regioregular poly(3-hexylthiophene) (P3HT) in the presence of catalytic amounts of Ni-catalyst. Seung-Hoi Kim Copyright © 2014 Seung-Hoi Kim. All rights reserved. The Development of Biomimetic Spherical Hydroxyapatite/Polyamide 66 Biocomposites as Bone Repair Materials Sun, 06 Jul 2014 00:00:00 +0000 http://www.hindawi.com/journals/ijps/2014/579252/ A novel biomedical material composed of spherical hydroxyapatite (s-HA) and polyamide 66 (PA) biocomposite (s-HA/PA) was prepared, and its composition, mechanical properties, and cytocompatibility were characterized and evaluated. The results showed that HA distributed uniformly in the s-HA/PA matrix. Strong molecule interactions and chemical bonds were presented between the s-HA and PA in the composites confirmed by IR and XRD. The composite had excellent compressive strength in the range between 95 and 132 MPa, close to that of natural bone. In vitro experiments showed the s-HA/PA composite could improve cell growth, proliferation, and differentiation. Therefore, the developed s-HA/PA composites in this study might be used for tissue engineering and bone repair. Xuesong Zhang, Ming Lu, Yan Wang, Xiaojing Su, and Xuelian Zhang Copyright © 2014 Xuesong Zhang et al. All rights reserved. Facile Synthesis of Magnetic Copolymer Microspheres Based on Poly(glycidyl methacrylate-co-N-isopropylacrylamide)/Fe3O4 by Suspension Photopolymerization Thu, 03 Jul 2014 11:16:06 +0000 http://www.hindawi.com/journals/ijps/2014/591898/ Magnetic copolymer based on poly(glycidyl methacrylate-co-N-isopropylacrylamide) microspheres was prepared by 2,2-dimethoxy-2-phenylacetophenone- (DMPP-) photo initiated and poly(vinyl alcohol)- (PVA-) stabilized single step suspension photopolymerization. The effect of chemical interaction, morphology, and thermal properties by adding 0.1% w/v Fe3O4 in the copolymer was investigated. Infrared analysis (FTIR) showed that (C=C) band disappeared after copolymerization, indicating that the magnetic copolymer microspheres were successfully synthesized and two important bands at 908 cm−1 and 1550 cm−1 appear. These are associated with the epoxy group stretching of GMA and secondary amide (N–H/C–H) deformation vibration of NIPAAm in magnetic microspheres. The X-ray diffraction (XRD) result proved the incorporation of Fe3O4 nanoparticles with copolymer microspheres as peak of Fe3O4 was observed. Morphology study revealed that magnetic copolymer exhibited uniform spheres and smoother appearance when entrapped with Fe3O4 nanoparticles. The lowest percentage of Fe3O4 nanoparticles leached from the copolymer microspheres was obtained at pH 7. Finally, thermal property of the copolymer microspheres was improved by adding a small amount of Fe3O4 nanoparticles that has been shown from the thermogram. Siti Zulaikha Mazlan, Faszly Rahim, and Sharina Abu Hanifah Copyright © 2014 Siti Zulaikha Mazlan et al. All rights reserved. Surface-Coated Polylactide Fiber Meshes as Tissue Engineering Matrices with Enhanced Cell Integration Properties Sun, 15 Jun 2014 07:34:02 +0000 http://www.hindawi.com/journals/ijps/2014/439784/ Poly(L-lactide-co-D/L-lactide)-based fiber meshes resembling structural features of the native extracellular matrix have been prepared by electrospinning. Subsequent coating of the electrospun fibers with an ultrathin plasma-polymerized allylamine (PPAAm) layer after appropriate preactivation with continuous O2/Ar plasma changed the hydrophobic nature of the polylactide surface into a hydrophilic polymer network and provided positively charged amino groups on the fiber surface able to interact with negatively charged pericellular matrix components. In vitro cell experiments using different human cell types (epithelial origin: gingiva and uroepithelium; bone cells: osteoblasts) revealed that the PPAAm-activated surfaces promoted the occupancy of the meshes by cells accompanied by improved initial cell spreading. This nanolayer is stable in its cell adhesive characteristics also after γ-sterilization. An in vivo study in a rat intramuscular implantation model demonstrated that the local inflammatory tissue response did not differ between PPAAm-coated and untreated polylactide meshes. Matthias Schnabelrauch, Ralf Wyrwa, Henrike Rebl, Claudia Bergemann, Birgit Finke, Michael Schlosser, Uwe Walschus, Silke Lucke, Klaus-Dieter Weltmann, and J. Barbara Nebe Copyright © 2014 Matthias Schnabelrauch et al. All rights reserved. Chemical Polymerization Kinetics of Poly-O-Phenylenediamine and Characterization of the Obtained Polymer in Aqueous Hydrochloric Acid Solution Using K2Cr2O7 as Oxidizing Agent Thu, 12 Jun 2014 09:13:34 +0000 http://www.hindawi.com/journals/ijps/2014/520910/ The oxidative chemical polymerization of o-phenylenediamine (OPDA) was studied in hydrochloric acid solution using potassium dichromate as oxidant at 5°C. The effects of potassium dichromate, hydrochloric acid, and monomer concentrations on the polymerization reaction were investigated. The order of reaction with respect to potassium dichromate, hydrochloric acid, and monomer concentration was found to be 1.011, 0.954, and 1.045, respectively. Also, the effect of temperature on the polymerization rate was studied and the apparent activation energy of the polymerization reaction was found to be 63.658 kJ/mol. The obtained polymer was characterized using XPS, IR, UV-visible, and elemental analysis. The surface morphology of the obtained polymers was characterized by X-ray diffraction and transmission electron microscopy (TEM). The TGA analysis was used to confirm the proposed structure and number of water molecules in each polymeric chain unit. The ac conductivity of (POPDA) was investigated as a function of frequency and temperature. The ac conductivity was interpreted as a power law of frequency. The frequency exponent (s) was found to be less than unity and decreased with the increase of temperature, which confirms that the correlated barrier hopping model was the dominant charge transport mechanism. S. M. Sayyah, A. B. Khaliel, Ahmed A. Aboud, and S. M. Mohamed Copyright © 2014 S. M. Sayyah et al. All rights reserved. Interaction of Refractory Dibenzothiophenes and Polymerizable Structures Thu, 12 Jun 2014 00:00:00 +0000 http://www.hindawi.com/journals/ijps/2014/103945/ We carried out first principles calculations to show that polymerizable structures containing hydroxyl (alcoholic chain) and amino groups are suitable to form stable complexes with dibenzothiophene (DBT) and its alkyl derivates. These sulfur pollutants are very difficult to eliminate through traditional catalytic processes. Spontaneous and exothermic interactions at 0 K primarily occur through the formation of stable complexes of organosulfur molecules with monomeric structures by hydrogen bonds. The bonds are formed between the sulfur atom and the hydrogen of the hydroxyl group; additional hydrogen bonds are formed between the hydrogen atoms of the organosulfur molecule and the nitrogen atoms of the monomers. We vary the number of methylene groups in the alcoholic chain containing the hydroxyl group of the monomer and find that the monomeric structure with four methylene groups has the best selectivity towards the interaction with the methyl derivates with reference to the interaction with DBT. Even this study does not consider solvent and competitive adsorption effects; our results show that monomeric structures containing amino and hydroxyl groups can be used to develop adsorbents to eliminate organosulfur pollutants from oil and its derivates. Jose L. Rivera, Pedro Navarro-Santos, Roberto Guerra-Gonzalez, and Enrique Lima Copyright © 2014 Jose L. Rivera et al. All rights reserved. Nanocomposites with Liquid-Like Multiwalled Carbon Nanotubes Dispersed in Epoxy Resin without Solvent Process Wed, 11 Jun 2014 09:31:05 +0000 http://www.hindawi.com/journals/ijps/2014/712637/ Liquid-like multiwall carbon nanotubes (MWNTs) were prepared with as-received carboxylic MWNTs-COOH and poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (PEO-b-PPO-b-PEO) through hydrogen bonding. The sample has liquid-like behavior above 58°C. The MWNTs content is 26.6 wt%. The liquid-like MWNTs nanofluids were incorporated into epoxy matrix with solvent-free process and dispersed well. When the liquid-like MWNTs nanofluids content is up to 1 wt%, the impact toughness of the nanocomposite is 153% higher than the pure epoxy matrix. Xi Zhang, Ya-Ping Zheng, Rui-Lu Yang, and Hai-Cheng Yang Copyright © 2014 Xi Zhang et al. All rights reserved. Effect of Polymerization Conditions on Thermal and Mechanical Properties of Ethylene/1-Butene Copolymer Made with Ziegler-Natta Catalysts Wed, 11 Jun 2014 08:59:06 +0000 http://www.hindawi.com/journals/ijps/2014/654260/ The effect of polymerization conditions on thermal and mechanical properties of ethylene/1-butene copolymers synthesized through titanium-magnesium-supported Ziegler-Natta catalysts was studied. The increase in hydrogen pressure leads to a decrease in molecular weight (MW), storage modulus, and melting temperature. However, it yields an increase in molecular weight distribution (MWD), , % crystallinity, tensile modulus, yield stress, and strain at break. The effects of ethylene pressure and polymerization temperature on the copolymer MW, MWD and thermal and mechanical properties have been investigated. However, the impacts of ethylene pressure and polymerization temperature on copolymer modulus, tensile strength, % crystallinity, crystallization peak temperature, yield stress, strain at break, and yield strain are marginal. The hydrogen pressure plays a major role in controlling the copolymer properties because it acts as an efficient chain transfer agent during polymerization reaction. The MW is the key parameter that influences flow activation energy. However, the other mechanical, dynamic mechanical, and thermal properties not only depend on MW but are also influenced by other parameters. Mostafizur Rahaman, M. Anwar Parvez, J. B. P. Soares, and I. A. Hussein Copyright © 2014 Mostafizur Rahaman et al. All rights reserved. Safety and Efficiency of Biomimetic Nanohydroxyapatite/Polyamide 66 Composite in Rabbits and Primary Use in Anterior Cervical Discectomy and Fusion Wed, 04 Jun 2014 11:53:26 +0000 http://www.hindawi.com/journals/ijps/2014/696045/ This study was conducted to validate the safety and efficiency of biomimetic nanohydroxyapatite/polyamide 66 (n-HA/PA66) composite in animal model (rabbit) and report its application in anterior cervical discectomy and fusion (ACDF) for 4, 12, and 24 weeks. N-HA/PA66 composite was implanted into one-side hind femur defects and the control defects were kept empty as blank controls. A combination of macroscopic and histomorphometric studies was performed up to 24 weeks postoperatively and compared with normal healing. 60 cervical spondylosis myelopathy and radiculopathy patients who were subjected to ACDF using n-HA/PA66 and PEEK cage were involved in this study with six-month minimum follow-up. Their radiographic (cage subsidence, fusion status, and segmental sagittal alignment (SSA)) and clinical (VAS and JOA scales) data before surgery and at each follow-up were recorded and compared. Nanohydroxyapatite/polyamide 66 composite is safe and effective in animal experiment and ACDF. Hui Xu, Yan Wang, Xiaojing Su, Xuelian Zhang, and Xuesong Zhang Copyright © 2014 Hui Xu et al. All rights reserved. Polymer Composites Reinforced by Nanotubes as Scaffolds for Tissue Engineering Sun, 01 Jun 2014 11:18:24 +0000 http://www.hindawi.com/journals/ijps/2014/805634/ The interest in polymer based composites for tissue engineering applications has been increasing in recent years. Nanotubes materials, including carbon nanotubes (CNTs) and noncarbonic nanotubes, with unique electrical, mechanical, and surface properties, such as high aspect ratio, have long been recognized as effective reinforced materials for enhancing the mechanical properties of polymer matrix. This review paper is an attempt to present a coherent yet concise review on the mechanical and biocompatibility properties of CNTs and noncarbonic nanotubes/polymer composites, such as Boron nitride nanotubes (BNNTs) and Tungsten disulfide nanotubes (WSNTs) reinforced polymer composites which are used as scaffolds for tissue engineering. We also introduced different preparation methods of CNTs/polymer composites, such as in situ polymerization, solution mixing, melt blending, and latex technology, each of them has its own advantages. Wei Wang, Susan Liao, Ming Liu, Qian Zhao, and Yuhe Zhu Copyright © 2014 Wei Wang et al. All rights reserved. Using Rutile TiO2 Nanoparticles Reinforcing High Density Polyethylene Resin Tue, 27 May 2014 11:10:51 +0000 http://www.hindawi.com/journals/ijps/2014/758351/ The TiO2 nanoparticles were used as a reinforcement to prepare nanocomposites with high density polyethylene (HDPE) by melt blending process. The original TiO2 (ORT) was modified by 3-glycidoxypropyltrimethoxysilane (GPMS) to improve the dispersion into HDPE matrix. The FT-IR spectroscopy and FESEM micrographs of modified TiO2 (GRT) demonstrated that GPMS successfully grafted with TiO2 nanoparticles. The tensile test of HDPE/ORT and HDPE/GRT nanocomposites with various contents of dispersive particles indicated that the tensile strength and Young’s modulus of HDPE/GRT nanocomposites are superior to the values of original HDPE and HDPE/ORT nanocomposites. At 1 wt.% of GRT, the mechanical properties of nanocomposites were optimal. In DSC and TGA analyses, with the presence of GRT in the nanocomposites, the thermal stability significantly increased in comparison with pure HDPE and HDPE/ORT nanocomposites. The better dispersion of GRT in polymer matrix as shown in FESEM images demonstrated the higher mechanical properties of HDPE/GRT nanocomposites to HDPE/ORT nanocomposites. Vu Manh Tuan, Da Woon Jeong, Ho Joon Yoon, SangYong Kang, Nguyen Vu Giang, Thai Hoang, Tran Ich Thinh, and Myung Yul Kim Copyright © 2014 Vu Manh Tuan et al. All rights reserved. Molecular Modeling of Acidic Treated PSTM-3T Polymer for Removal of Heavy Metal Ions by Experimental and Computational Studies Mon, 26 May 2014 00:00:00 +0000 http://www.hindawi.com/journals/ijps/2014/260378/ The synthesized poly[N,N′-bis(3-silsesquioxanilpropyl)-thiocarbamide] (PSTM-3T) was used and the surface morphology and microstructure of it were analyzed by scanning electron microscopy with energy dispersive spectrometer (SEM/EDS). The molecular structure change of the PSTM-3T polymer of the PSTM-3T after treatment by acidic solution with different pHs was revealed using FT-IR experiments and ab initio calculations with density functional theory method. The sorption efficiency of the heavy metal ions depends on the molecular structure change of PSTM-3T after treatment of different pH aqueous solutions. After the treatment of acidic solution (pH = 2) of PSTM-3T, the polymer formed the tautomer state to increase the sorption efficiency for chromate ion. For the increment of pH value for acidic solution, the PSTM-3T polymer was dissociated to increase the sorption efficiency for copper ion. Natsagdorj Narantsogt, Gunchin Burmaa, Adiya Perlee-Oidov, Nyamdorj Shurkhuu, and Namsrai Javkhlantugs Copyright © 2014 Natsagdorj Narantsogt et al. All rights reserved. Coupling Metallic Nanostructures to Thermally Responsive Polymers Allows the Development of Intelligent Responsive Membranes Thu, 22 May 2014 10:42:44 +0000 http://www.hindawi.com/journals/ijps/2014/967615/ Development of porous membranes capable of controlling flow or changing their permeability to specific chemical entities, in response to small changes in environmental stimuli, is an area of appealing research, since these membranes present a wide variety of applications. The synthesis of these membranes has been mainly approached through grafting of environmentally responsive polymers to the surface walls of polymeric porous membranes. This synergizes the chemical stability and mechanical strength of the polymer membrane with the fast response times of the bonded polymer chains. Therefore, different composite membranes capable of changing their effective pore size with environmental triggers have been developed. A recent interest has been the development of porous membranes responsive to light, since these can achieve rapid, remote, noninvasive, and localized flow control. This work describes the synthesis pathway to construct intelligent optothermally responsive membranes. The method followed involved the grafting of optothermally responsive polymer-metal nanoparticle nanocomposites to polycarbonate track-etched porous membranes (PCTEPMs). The nanoparticles coupled to the polymer grafts serve as the optothermal energy converters to achieve optical switching of the pores. The results of the paper show that grafting of the polymer and in situ synthesis of the metallic particles can be easily achieved. In addition, the composite membranes allow fast and reversible switching of the pores using both light and heat permitting control of fluid flow. J. Rubén Morones-Ramírez Copyright © 2014 J. Rubén Morones-Ramírez. All rights reserved. Rheological Properties of Hydrophobically Associative Copolymers Prepared in a Mixed Micellar Method Based on Methacryloxyethyl-dimethyl Cetyl Ammonium Chloride as Surfmer Thu, 15 May 2014 11:09:41 +0000 http://www.hindawi.com/journals/ijps/2014/875637/ A novel cationic surfmer, methacryloxyethyl-dimethyl cetyl ammonium chloride (DMDCC), is synthesized. The micellar properties, including critical micelle concentration and aggregation number, of DMDCC-SDS mixed micelle system are studied using conductivity measurement and a steady-state fluorescence technique. A series of water-soluble associative copolymers with acrylamide and DMDCC are prepared using the mixed micellar polymerization. Compared to conventional micellar polymerization, this new method could not only reasonably adjust the length of the hydrophobic microblock, that is, , but also sharply reduce the amount of surfactant. Their rheological properties related to hydrophobic microblock and stickers are studied by the combination of steady flow and linear viscoelasticity experiments. The results indicate that both the hydrophobic content and, especially the length of the hydrophobic microblock are the dominating factors effecting the intermolecular hydrophobic association. The presence of salt influences the dynamics of copolymers, resulting in the variation of solution characters. Viscosity measurement indicates that mixed micelles between the copolymer chain and SDS molecules serving as junction bridges for transitional network remarkably enhance the viscosity. Moreover, the microscopic structures of copolymers at different experimental conditions are conducted by ESEM. This method gives us an insight into the preparation of hydrophobically associative water-soluble copolymers by cationic surfmer-anionic surfactant mixed micellar polymerization with good performance. Rui Liu, WanFen Pu, Hu Jia, XiaoPei Shang, Yue Pan, and ZhaoPeng Yan Copyright © 2014 Rui Liu et al. All rights reserved. Preparation and Characterization of Polymer Electrolyte of Glycidyl Methacrylate-Methyl Methacrylate-LiClO4 Plasticized with Ethylene Carbonate Wed, 14 May 2014 09:39:47 +0000 http://www.hindawi.com/journals/ijps/2014/638279/ In the present investigation, we study the properties of the plasticized polyglycidyl methacrylate P(GMA) copolymerized with polymethyl methacrylate P(MMA)-LiClO4 polymer electrolyte prepared by solution casting technique. The electrolyte was characterized using impedance spectroscopy (EIS), Fourier transforms infrared (FTIR), cyclic voltammetry (CV), and X-ray diffraction (XRD). The conductivity was improved from  S cm−1 to  S cm−1 upon the addition of 25 wt.% LiClO4 salt into P(GMA-MMA). The conductivity was improved from  S cm−1 to  S cm−1 upon the addition of 80 wt.% EC into P(GMA-MMA)-LiClO4 The band that belongs to C–O–C is shifted farther than the band of C=O upon the addition of LiClO4 into P(GMA-MMA). The band of C–O–C stretching is shifted to lower wavenumber upon the addition of EC into P(GMA-MMA)-LiClO4. Upon the addition of EC into P(GMA-co-MMA), the intensity of the peaks decreases, implying the amorphous nature of the electrolyte increases with the concentration of the plasticizer. The electrolyte is electrochemically stable at 3.8 V, making it suitable for dye-sensitized solar cell application. M. Imperiyka, A. Ahmad, S. A. Hanifah, and M. Y. A. Rahman Copyright © 2014 M. Imperiyka et al. All rights reserved. 1-Butyl-3-methylimidazolium Salts as New Catalysts to Produce Epoxy-anhydride Polymers with Improved Properties Tue, 13 May 2014 12:05:43 +0000 http://www.hindawi.com/journals/ijps/2014/607341/ We report the curing process of epoxy oligomers by using isomethyltetrahydrophthalic anhydride catalyzed with 1-butyl-3-methylimidazolium salts. Catalytic action has been ascertained to be dependent on the nature of anion. Salts with and anions appeared to be most active. Formation of salt adducts with epoxy resin and anhydride is shown. Polymers having higher values of strength and glass transition temperature—as compared with similar epoxy systems cured in the presence of tertiary amines as catalysts—are prepared. Mikhail S. Fedoseev, Matvey S. Gruzdev, and Lubov F. Derzhavinskaya Copyright © 2014 Mikhail S. Fedoseev et al. All rights reserved. Poly(3-hydroxybutyrate) and Poly(3-hydroxybutyrate-co-3-hydroxyvalerate): Structure, Property, and Fiber Tue, 13 May 2014 07:12:48 +0000 http://www.hindawi.com/journals/ijps/2014/374368/ Poly(3-hydroxybutyrate) [P(3HB)] and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] are produced by various microorganisms as an intracellular carbon and energy reserve from agricultural feedstocks such as sugars and plant oils under unbalanced growth conditions. P(3HB) and P(3HB-co-3HV) have attracted the attention of academia and industry because of its biodegradability, biocompatibility, thermoplasticity, and plastic-like properties. This review first introduced the isodimorphism, spherulites, and molecular interaction of P(3HB) and P(3HB-co-3HV). In addition, the effects of 3HV content on the melting temperature and crystallization rate were discussed. Then the drawbacks of P(3HB) and P(3HB-co-3HV) including brittleness, narrow melt processing window, low crystallization rate, slow biodegradation rate in body, and so on were summarized. At last, the preparation, structure, and properties of P(3HB) and P(3HB-co-3HV) fiber were introduced. Qingsheng Liu, Hongxia Zhang, Bingyao Deng, and Xiaoyan Zhao Copyright © 2014 Qingsheng Liu et al. All rights reserved. High-Density Polyethylene Composites Filled with Nanosilica Containing Immobilized Nanosilver or Nanocopper: Thermal, Mechanical, and Bactericidal Properties and Morphology and Interphase Characterization Wed, 07 May 2014 14:21:56 +0000 http://www.hindawi.com/journals/ijps/2014/183724/ Silica containing immobilized nanosilver (Ag-SiO2) or nanocopper (Cu-SiO2) was used as a filler for high-density polyethylene (HDPE). The HDPE/Ag-SiO2 and HDPE/Cu-SiO2 composites were prepared by melt blending and injection molding. The microstructure of the composites was examined using transmission electron microscopy (TEM). The crystallization behavior and thermal properties were studied using differential scanning calorimetry (DSC) and thermogravimetry (TGA). The mechanical properties were characterized by tensile, flexural, and impact tests as well as dynamic mechanical thermal analysis (DMTA). The ability of silica to give antimicrobial activity to HDPE was also investigated and discussed. The TEM images indicate that Ag-SiO2 show lower degree of agglomeration than Cu-SiO2 nanoparticles. The crystallization temperature increased, whereas crystallinity decreased in the composites. The thermal stability of the composites was significantly better compared to HDPE. Improved stiffness indicating very good interfacial adhesion was observed. Excellent activity against different kinds of bacteria was found. Regina Jeziórska, Maria Zielecka, Beata Gutarowska, and Zofia Żakowska Copyright © 2014 Regina Jeziórska et al. All rights reserved. Viscoelastic, Spectroscopic, and Microscopic Characterization of Novel Bio-Based Plasticized Poly(vinyl chloride) Compound Mon, 05 May 2014 00:00:00 +0000 http://www.hindawi.com/journals/ijps/2014/846189/ Plasticized poly(vinyl chloride) (PVC) is one of the most widely consumed commodity plastics. Nevertheless, the commonly used plasticizers, particularly phthalates, are found to be detrimental to the environment and human health. This study aimed to investigate the ability of an alternative greener material, medium-chain-length polyhydroxyalkanoates (mcl-PHA), a kind of biopolyester and its thermally degraded oligoesters, to act as a compatible bioplasticizer for PVC. In this study, mcl-PHA were synthesized by Pseudomonas putida PGA1 in shake flask fermentation using saponified palm kernel oil (SPKO) and subsequently moderately thermodegraded to low molecular weight oligoesters (degPHA). SEM, ATR-FTIR, 1H-NMR, and DMA were conducted to study the film morphology, microstructure, miscibility, and viscoelastic properties of the PVC-PHA and PVC/degPHA binary blends. Increased height and sharpness of tan peak for all binary blends reveal an increase in chain mobility in the PVC matrix and high miscibility within the system. The PVC-PHA miscibility is possibly due to the presence of specific interactions between chlorines of PVC with the C=O group of PHA as evidenced by spectroscopic analyses. Dynamic viscoelastic measurements also showed that mcl-PHA and their oligoesters could reduce the of PVC, imparting elasticity to the PVC compounds and decreasing the stiffness of PVC. Mei Chan Sin, Irene Kit Ping Tan, Mohd Suffian Mohd Annuar, and Seng Neon Gan Copyright © 2014 Mei Chan Sin et al. All rights reserved. Environmental Friendly Polymer Materials for Sustainable Development Tue, 29 Apr 2014 12:44:56 +0000 http://www.hindawi.com/journals/ijps/2014/107028/ Aihua He, Shaojun Li, Jisheng Ma, and Zhou Yang Copyright © 2014 Aihua He et al. All rights reserved. The Modification of Polyurethane Foams Using New Boroorganic Polyols: Obtaining of Polyols with the Use of Hydroxypropyl Urea Derivatives Sun, 27 Apr 2014 14:08:25 +0000 http://www.hindawi.com/journals/ijps/2014/250782/ Methods of synthesis of new prospective polyol components for obtaining of polyurethane foams of reduced combustibility using eco-friendly substrates have been presented. With this end in view, N,N′-bis(2-hydroxypropyl)urea was esterified with boric acid and next the hydrogenborate obtained was hydroxyalkylated by the excess of propylene carbonate. The influence of the way of esterification on the hydroxypropyl derivatives of borate substituted urea properties has been investigated. Esterification was run in the presence and in the absence of solvent. According to instrumental analysis, the characteristic of hydrogenborates obtained in both methods was found to be similar. The hydroxypropyl derivatives of borate substituted urea show similar spectral characteristics and thermal stabilities and differ slightly in molar masses, by-product contents, and physical properties, particularly viscosities. The properties of these derivatives were assessed paying special attention to their application as the polyol components of polyurethane foams. Hydroxypropyl urea derivatives, modified by boric acid, show changes in physical properties with temperature, similarly to typical polyols used for obtaining of polyurethane foams. Iwona Zarzyka Copyright © 2014 Iwona Zarzyka. All rights reserved. Controlling Dielectric and Magnetic Properties of PVdF/Magnetite Nanocomposite Fibre Webs Sun, 27 Apr 2014 13:34:28 +0000 http://www.hindawi.com/journals/ijps/2014/102946/ The ability of filtration and separation media containing fibres to remove impurities from oil, water, and blood can be enhanced using magnetic fields. The ability to regulate the dielectric and magnetic behaviour of fibrous webs in terms of superparamagnetic or ferromagnetic properties by adjusting material composition is fundamental to meeting end-use requirements. Electrospun fibres were produced from PVdF (polyvinylidene fluoride) and nanomagnetite (Fe3O4 nanoparticles) from solutions of PVdF in dimethylacetamide containing Fe3O4 nanoparticle contents ranging from 3 to 10 wt%. Fibre dimensions, morphology, and nanoparticle agglomeration were characterised by environmental scanning electron microscopy (ESEM) and field emission gun transmission electron microscopy (FEGTEM). Dielectric behaviour of the fibre webs was influenced by web porosity and the Fe3O4 nanoparticle content. Impedance analysis of the webs indicated an increase in dielectric constant of ∼80% by the addition of 10 wt% Fe3O4 nanoparticles compared to 100 wt% PVdF. The dielectric constants of the webs were compared with those obtained from the theoretical mixing models of Maxwell and Lichtenecker. Vibrating sample magnetometer (VSM) magnetisation measurements indicated a blocking temperature above 300 K suggesting ferrimagnetic rather than superparamagnetic behaviour as a result of Fe3O4 nanoparticle agglomeration within fibres. A. P. Venugopal, O. Cespedes, and S. J. Russell Copyright © 2014 A. P. Venugopal et al. All rights reserved. Enhancement of Mechanical and Dynamic Mechanical Properties of Hydrophilic Nanoclay Reinforced Polylactic Acid/Polycaprolactone/Oil Palm Mesocarp Fiber Hybrid Composites Sun, 27 Apr 2014 10:17:53 +0000 http://www.hindawi.com/journals/ijps/2014/715801/ In previous studies, the effect of the addition of 1 wt% hydrophilic nanoclay on polylactic acid (PLA)/polycaprolactone (PCL)/oil palm mesocarp fiber (OPMF) biocomposites was investigated by tensile properties, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The current studies focus on the effect of addition of 1 wt% hydrophilic nanoclay on mechanical (flexural and impact properties) and dynamic mechanical properties of composites. The composites were characterized by the Fourier transform infrared spectroscopy (FTIR) and dynamic mechanical analysis (DMA). FTIR spectra show that peak shifting occurs when 1 wt% hydrophilic nanoclay was added to composites. The addition of 1 wt% hydrophilic nanoclay successfully improves the flexural properties and impact resistance of the biocomposites. The storage modulus of biocomposites was decreased when nanoclay was added which indicates that the stiffness of biocomposites was reduced. The loss modulus curve shows that the addition of nanoclay shift two tg in composites become closer to each other which indicates that the incorporation of nanoclay slightly compatibilizes the biocomposites. Tan δ indicated that hybrid composites dissipate less energy compared to biocomposites indicate that addition of clay to biocomposites improves fiber/matrix adhesion. Water sorption test shows that the addition of nanoclay enhances water resistance of composites. Chern Chiet Eng, Nor Azowa Ibrahim, Norhazlin Zainuddin, Hidayah Ariffin, Wan Md. Zin Wan Yunus, and Yoon Yee Then Copyright © 2014 Chern Chiet Eng et al. All rights reserved. 3D-Printed Biopolymers for Tissue Engineering Application Thu, 24 Apr 2014 13:41:16 +0000 http://www.hindawi.com/journals/ijps/2014/829145/ 3D printing technology has recently gained substantial interest for potential applications in tissue engineering due to the ability of making a three-dimensional object of virtually any shape from a digital model. 3D-printed biopolymers, which combine the 3D printing technology and biopolymers, have shown great potential in tissue engineering applications and are receiving significant attention, which has resulted in the development of numerous research programs regarding the material systems which are available for 3D printing. This review focuses on recent advances in the development of biopolymer materials, including natural biopolymer-based materials and synthetic biopolymer-based materials prepared using 3D printing technology, and some future challenges and applications of this technology are discussed. Xiaoming Li, Rongrong Cui, Lianwen Sun, Katerina E. Aifantis, Yubo Fan, Qingling Feng, Fuzhai Cui, and Fumio Watari Copyright © 2014 Xiaoming Li et al. All rights reserved. Production of High Viscosity Chitosan from Biologically Purified Chitin Isolated by Microbial Fermentation and Deproteinization Wed, 23 Apr 2014 08:58:24 +0000 http://www.hindawi.com/journals/ijps/2014/162173/ The objective of this study was to produce high viscosity chitosan from shrimp chitin prepared by using a two-step biological treatment process: decalcification and deproteinization. Glucose was fermented with Lactobacillus pentosus L7 to lactic acid. At a pH of , the calcium carbonate of the shells was solubilized in 48 hours. The amounts of residual calcium in the form of ash () and crude protein () were further eliminated by the activity of proteolytic Bacillus thuringiensis SA. After decalcification and deproteinization of the shrimp shells, residual calcium and crude protein of shrimp chitin flakes were % and , respectively. Chitin was deacetylated with 50% NaOH at 121°C for 5 hours. After deacetylation, the chitosan had residual calcium, crude protein content, and degree of acetylation of , , and , respectively. The viscosity of chitosan prepared from chitin extracted by this two-step biological process was , whereas chitosan prepared from chemically processed chitin had a viscosity of  , indicating that biologically purified chitin gave chitosan with a high quality. Ekkalak Ploydee and Saipin Chaiyanan Copyright © 2014 Ekkalak Ploydee and Saipin Chaiyanan. All rights reserved. The Application of Polysaccharide Biocomposites to Repair Cartilage Defects Thu, 17 Apr 2014 16:44:10 +0000 http://www.hindawi.com/journals/ijps/2014/654597/ Owing to own nature of articular cartilage, it almost has no self-healing ability once damaged. Despite lots of restore technologies having been raised in the past decades, no repair technology has smoothly substituted for damaged cartilage using regenerated cartilage tissue. The approach of tissue engineering opens a door to successfully repairing articular cartilage defects. For instance, grafting of isolated chondrocytes has huge clinical potential for restoration of cartilage tissue and cure of chondral injury. In this paper, SD rats are used as subjects in the experiments, and they are classified into three groups: natural repair (group A), hyaluronic acid repair (group B), and polysaccharide biocomposites repair (hyaluronic acid hydrogel containing chondrocytes, group C). Through the observation of effects of repairing articular cartilage defects, we concluded that cartilage repair effect of polysaccharide biocomposites was the best at every time point, and then the second best was hyaluronic acid repair; both of them were better than natural repair. Polysaccharide biocomposites have good biodegradability and high histocompatibility and promote chondrocytes survival, reproduction, and spliting. Moreover, polysaccharide biocomposites could not only provide the porous network structure but also carry chondrocytes. Consequently hyaluronic acid-based polysaccharide biocomposites are considered to be an ideal biological material for repairing articular cartilage. Feng Zhao, Wei He, Yueling Yan, Hongjuan Zhang, Guoping Zhang, Dehu Tian, and Hongyang Gao Copyright © 2014 Feng Zhao et al. All rights reserved.