About this Journal Submit a Manuscript Table of Contents
International Journal of Rheumatology
Volume 2012 (2012), Article ID 539683, 8 pages
http://dx.doi.org/10.1155/2012/539683
Review Article

The Th17/IL-23 Axis and Natural Immunity in Psoriatic Arthritis

Department of Medical Oncology and Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan

Received 6 January 2012; Accepted 26 January 2012

Academic Editor: Lazaros I. Sakkas

Copyright © 2012 Shinji Maeda et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Menter, A. Gottlieb, S. R. Feldman et al., “Guidelines of care for the management of psoriasis and psoriatic arthritis. Section 1. Overview of psoriasis and guidelines of care for the treatment of psoriasis with biologics,” Journal of the American Academy of Dermatology, vol. 58, no. 5, pp. 826–850, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. A. Gottlieb, N. J. Korman, K. B. Gordon et al., “Guidelines of care for the management of psoriasis and psoriatic arthritis. Section 2. Psoriatic arthritis: overview and guidelines of care for treatment with an emphasis on the biologics,” Journal of the American Academy of Dermatology, vol. 58, no. 5, pp. 851–864, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. D. D. O'Rielly and P. Rahman, “Genetics of susceptibility and treatment response in psoriatic arthritis,” Nature Reviews Rheumatology, vol. 7, no. 12, pp. 718–732, 2011. View at Publisher · View at Google Scholar · View at PubMed
  4. K. Reich, F. O. Nestle, K. Papp et al., “Infliximab induction and maintenance therapy for moderate-to-severe psoriasis: a phase III, multicentre, double-blind trial,” The Lancet, vol. 366, no. 9494, pp. 1367–1374, 2005. View at Publisher · View at Google Scholar · View at PubMed
  5. C. E. Antoni, A. Kavanaugh, B. Kirkham et al., “Sustained benefits of infliximab therapy for dermatologic and articular manifestations of psoriatic arthritis: results from the Infliximab Multinational Psoriatic Arthritis Controlled Trial (IMPACT),” Arthritis and Rheumatism, vol. 52, no. 4, pp. 1227–1236, 2005, Erratum in: Arthritis and Rheumatism, vol. 52, no. 9, p. 2951, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. W. Weger, “Current status and new developments in the treatment of psoriasis and psoriatic arthritis with biological agents,” British Journal of Pharmacology, vol. 160, no. 4, pp. 810–820, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. S. Sano, K. S. Chan, S. Carbajal et al., “Stat3 links activated keratinocytes and immunocytes required for development of psoriasis in a novel transgenic mouse model,” Nature Medicine, vol. 11, no. 1, pp. 43–49, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. C. Infante-Duarte, H. F. Horton, M. C. Byrne, and T. Kamradt, “Microbial lipopeptides induce the production of IL-17 in Th cells,” Journal of Immunology, vol. 165, no. 11, pp. 6107–6115, 2000. View at Scopus
  9. C. M. Tato and J. J. O'Shea, “Immunology: what does it mean to be just 17?” Nature, vol. 441, no. 7090, pp. 166–168, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. Y. Iwakura and H. Ishigame, “The IL-23/IL-17 axis in inflammation,” Journal of Clinical Investigation, vol. 116, no. 5, pp. 1218–1222, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. L. Steinman, “A brief history of TH17, the first major revision in the TH1/TH2 hypothesis of T cell-mediated tissue damage,” Nature Medicine, vol. 13, no. 2, pp. 139–145, 2007, Erratum in: Nature Medicine, vol. 13, no. 3, p. 385, 2007. View at Publisher · View at Google Scholar · View at PubMed
  12. S. C. Liang, X. Y. Tan, D. P. Luxenberg et al., “Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides,” The Journal of Experimental Medicine, vol. 203, no. 10, pp. 2271–2279, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. S. Nakae, Y. Komiyama, A. Nambu et al., “Antigen-specific T cell sensitization is impaired in Il-17-deficient mice, causing suppression of allergic cellular and humoral responses,” Immunity, vol. 17, no. 3, pp. 375–387, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Hirota, M. Hashimoto, H. Yoshitomi et al., “T cell self-reactivity forms a cytokine milieu for spontaneous development of IL-17+ Th cells that cause autoimmune arthritis,” The Journal of Experimental Medicine, vol. 204, no. 1, pp. 41–47, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. Y. Zheng, D. M. Danilenko, P. Valdez et al., “Interleukin-22, a TH17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis,” Nature, vol. 445, no. 7128, pp. 648–651, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. I. I. Ivanov, B. S. McKenzie, L. Zhou et al., “The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells,” Cell, vol. 126, no. 6, pp. 1121–1133, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. M. J. McGeachy, K. S. Bak-Jensen, Y. Chen et al., “TGF-β and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain TH-17 cell-mediated pathology,” Nature Immunology, vol. 8, no. 12, pp. 1390–1397, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. L. E. Harrington, R. D. Hatton, P. R. Mangan et al., “Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages,” Nature Immunology, vol. 6, no. 11, pp. 1123–1132, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. E. Bettelli, Y. Carrier, W. Gao et al., “Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells,” Nature, vol. 441, no. 7090, pp. 235–238, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. C. L. Langrish, Y. Chen, W. M. Blumenschein et al., “IL-23 drives a pathogenic T cell population that induces autoimmune inflammation,” The Journal of Experimental Medicine, vol. 201, no. 2, pp. 233–240, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. E. G. Harper, C. Guo, H. Rizzo et al., “Th17 cytokines stimulate CCL20 expression in keratinocytes in vitro and in vivo: implications for psoriasis pathogenesis,” Journal of Investigative Dermatology, vol. 129, no. 9, pp. 2175–2183, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. M. A. Lowes, T. Kikuchi, J. Fuentes-Duculan et al., “Psoriasis vulgaris lesions contain discrete populations of Th1 and Th17 T cells,” Journal of Investigative Dermatology, vol. 128, no. 5, pp. 1207–1211, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. K. Wolk, E. Witte, E. Wallace et al., “IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes: a potential role in psoriasis,” European Journal of Immunology, vol. 36, no. 5, pp. 1309–1323, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. K. E. Nograles, L. C. Zaba, E. Guttman-Yassky et al., “Th17 cytokines interleukin (IL)-17 and IL-22 modulate distinct inflammatory and keratinocyte-response pathways,” British Journal of Dermatology, vol. 159, no. 5, pp. 1092–1102, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. J. R. Chan, W. Blumenschein, E. Murphy et al., “IL-23 stimulates epidermal hyperplasia via TNF and IL-20R2-dependent mechanisms with implications for psoriasis pathogenesis,” The Journal of Experimental Medicine, vol. 203, no. 12, pp. 2577–2587, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. E. Lee, W. L. Trepicchio, J. L. Oestreicher et al., “Increased expression of interleukin 23 p19 and p40 in lesional skin of patients with psoriasis vulgaris,” The Journal of Experimental Medicine, vol. 199, no. 1, pp. 125–130, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. S. Kagami, H. L. Rizzo, J. J. Lee, Y. Koguchi, and A. Blauvelt, “Circulating Th17, Th22, and Th1 cells are increased in psoriasis,” Journal of Investigative Dermatology, vol. 130, no. 5, pp. 1373–1383, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. K. Boniface, F. X. Bernard, M. Garcia, A. L. Gurney, J. C. Lecron, and F. Morel, “IL-22 inhibits epidermal differentiation and induces proinflammatory gene expression and migration of human keratinocytes,” Journal of Immunology, vol. 174, no. 6, pp. 3695–3702, 2005. View at Scopus
  29. S. M. Sa, P. A. Valdez, J. Wu et al., “The effects of IL-20 subfamily cytokines on reconstituted human epidermis suggest potential roles in cutaneous innate defense and pathogenic adaptive immunity in psoriasis,” Journal of Immunology, vol. 178, no. 4, pp. 2229–2240, 2007, Erratum in: The Journal of Immunology, vol. 178, no. 11, p. 7487, 2007.
  30. K. Wolk, H. S. Haugen, W. Xu et al., “IL-22 and IL-20 are key mediators of the epidermal alterations in psoriasis while IL-17 and IFN-γ are not,” Journal of Molecular Medicine, vol. 87, no. 5, pp. 523–536, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. A. Di Cesare, P. Di Meglio, and F. O. Nestle, “The IL-23Th17 axis in the immunopathogenesis of psoriasis,” Journal of Investigative Dermatology, vol. 129, no. 6, pp. 1339–1350, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. M. A. Lowes, F. Chamian, M. V. Abello et al., “Increase in TNF-α and inducible nitric oxide synthase-expressing dendritic cells in psoriasis and reduction with efalizumab (anti-CD11a),” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 52, pp. 19057–19062, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. L. C. Zaba, J. Fuentes-Duculan, N. J. Eungdamrong et al., “Psoriasis is characterized by accumulation of immunostimulatory and Th1/Th17 cell-polarizing myeloid dendritic cells,” The Journal of investigative dermatology, vol. 129, no. 1, pp. 79–88, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. L. C. Zaba, J. G. Krueger, and M. A. Lowes, “Resident and “inflammatory” dendritic cells in human skin,” Journal of Investigative Dermatology, vol. 129, no. 2, pp. 302–308, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. L. C. Zaba, I. Cardinale, P. Gilleaudeau et al., “Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Th17 responses,” The Journal of Experimental Medicine, vol. 204, no. 13, pp. 3183–3194, 2007, Erratum in: The Journal of Experimental Medicine, vol. 205, no. 8, p. 1941, 2008. View at Publisher · View at Google Scholar · View at PubMed
  36. J. T. Elder, A. T. Bruce, J. E. Gudjonsson et al., “Molecular dissection of psoriasis: integrating genetics and biology,” Journal of Investigative Dermatology, vol. 130, no. 5, pp. 1213–1226, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. A. B. Kimball, K. B. Gordon, R. G. Langley, A. Menter, R. J. Perdok, and J. Valdes, “Efficacy and safety of ABT-874, a monoclonal anti-interleukin 12/23 antibody, for the treatment of chronic plaque psoriasis: 36-week observation/retreatment and 60-week open-label extension phases of a randomized phase II trial,” Journal of the American Academy of Dermatology, vol. 64, no. 2, pp. 263–274, 2011. View at Publisher · View at Google Scholar · View at PubMed
  38. C. L. Leonardi, A. B. Kimball, K. A. Papp et al., “Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1),” The Lancet, vol. 371, no. 9625, pp. 1665–1674, 2008, Erratum in: The Lancet, vol. 371, no. 9627, p.1838, 2008. View at Publisher · View at Google Scholar · View at PubMed
  39. K. A. Papp, R. G. Langley, M. Lebwohl et al., “Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 52-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 2),” The Lancet, vol. 371, no. 9625, pp. 1675–1684, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. G. G. Krueger, R. G. Langley, C. Leonardi et al., “A human interleukin-12/23 monoclonal antibody for the treatment of psoriasis,” The New England Journal of Medicine, vol. 356, no. 6, pp. 580–592, 2007. View at Publisher · View at Google Scholar · View at PubMed
  41. G. Piskin, U. Tursen, R. M. R. Sylva-Steenland, J. D. Bos, and M. B. M. Teunissen, “Clinical improvement in chronic plaque-type psoriasis lesions after narrow-band UVB therapy is accompanied by a decrease in the expression of IFN-γ inducers—IL-12, IL-18 and IL-23,” Experimental Dermatology, vol. 13, no. 12, pp. 764–772, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. A. B. Gottlieb, F. Chamian, S. Masud et al., “TNF inhibition rapidly down-regulates multiple proinflammatory pathways in psoriasis plaques,” Journal of Immunology, vol. 175, no. 4, pp. 2721–2729, 2005. View at Scopus
  43. L. C. Zaba, M. Suárez-Fariñas, J. Fuentes-Duculan et al., “Effective treatment of psoriasis with etanercept is linked to suppression of IL-17 signaling, not immediate response TNF genes,” Journal of Allergy and Clinical Immunology, vol. 124, no. 5, pp. 1022–e395, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. M. C. Genovese, F. van den Bosch, S. A. Roberson et al., “LY2439821, a humanized anti-interleukin-17 monoclonal antibody, in the treatment of patients with rheumatoid arthritis: a phase I randomized, double-blind, placebo-controlled, proof-of-concept study,” Arthritis and Rheumatism, vol. 62, no. 4, pp. 929–939, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. D. Veale, G. Yanni, S. Rogers, L. Barnes, B. Bresnihan, and O. FitzGerald, “Reduced synovial membrane macrophage numbers, ELAM-1 expression, and lining layer hyperplasia in psoriatic arthritis as compared with rheumatoid arthritis,” Arthritis and Rheumatism, vol. 36, no. 7, pp. 893–900, 1993. View at Scopus
  46. G. Mori, F. P. Cantatore, G. Brunetti et al., “Synovial fluid fibroblasts and lymphocytes support the osteoclastogenesis in human psoriatic arthritis,” Annals of the New York Academy of Sciences, vol. 1117, pp. 159–164, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. T. Yago, Y. Nanke, M. Kawamoto et al., “IL-23 induces human osteoclastogenesis via IL-17 in vitro, and anti-IL-23 antibody attenuates collagen-induced arthritis in rats,” Arthritis Research and Therapy, vol. 9, no. 5, article R96, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. A. Gottlieb, A. Menter, A. Mendelsohn et al., “Ustekinumab, a human interleukin 12/23 monoclonal antibody, for psoriatic arthritis: randomised, double-blind, placebo-controlled, crossover trial,” The Lancet, vol. 373, no. 9664, pp. 633–640, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. J. D. Cañete, B. Santiago, T. Cantaert et al., “Ectopic lymphoid neogenesis in psoriatic arthritis,” Annals of the Rheumatic Diseases, vol. 66, no. 6, pp. 720–726, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. C. L. Danning, G. G. Illei, C. Hitchon, M. R. Greer, D. T. Boumpas, and I. B. Mcinnes, “Macrophage-derived cytokine and nuclear factor κB p65 expression in synovial membrane and skin of patients with psoriatic arthritis,” Arthritis and Rheumatism, vol. 43, no. 6, pp. 1244–1256, 2000. View at Publisher · View at Google Scholar · View at Scopus
  51. A. W. R. van Kuijk, P. Reinders-Blankert, T. J. M. Smeets, B. A. C. Dijkmans, and P. P. Tak, “Detailed analysis of the cell infiltrate and the expression of mediators of synovial inflammation and joint destruction in the synovium of patients with psoriatic arthritis: implications for treatment,” Annals of the Rheumatic Diseases, vol. 65, no. 12, pp. 1551–1557, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. L. R. Espinoza, J. L. Aguilar, C. G. Espinoza, M. L. Cuellar, E. Scopelitis, and L. H. Silveira, “Fibroblast function in psoriatic arthritis. I. Alteration of cell kinetics and growth factor responses,” Journal of Rheumatology, vol. 21, no. 8, pp. 1502–1506, 1994. View at Scopus
  53. L. R. Espinoza, C. G. Espinoza, M. L. Cuellar, E. Scopelitis, L. H. Silveira, and G. R. Grotendorst, “Fibroblast function in psoriatic arthritis. II. Increased expression of β platelet derived growth factor receptors and increased production of growth factor and cytokines,” Journal of Rheumatology, vol. 21, no. 8, pp. 1507–1511, 1994. View at Scopus
  54. E. Kruithof, D. Baeten, L. de Rycke et al., “Synovial histopathology of psoriatic arthritis, both oligo- and polyarticular, resembles spondyloarthropathy more than it does rheumatoid arthritis,” Arthritis Research & Therapy., vol. 7, no. 3, pp. R569–580, 2005. View at Scopus
  55. C. Jandus, G. Bioley, J. P. Rivals, J. Dudler, D. Speiser, and P. Romero, “Increased numbers of circulating polyfunctional Th17 memory cells in patients with seronegative spondylarthritides,” Arthritis and Rheumatism, vol. 58, no. 8, pp. 2307–2317, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. D. McGonagle, R. J. U. Lories, A. L. Tan, and M. Benjamin, “The concept of a “synovio-entheseal complex” and its implications for understanding joint inflammation and damage in psoriatic arthritis and beyond,” Arthritis and Rheumatism, vol. 56, no. 8, pp. 2482–2491, 2007. View at Publisher · View at Google Scholar · View at PubMed
  57. D. McGonagle, A. L. Tan, and M. Benjamin, “The nail as a musculoskeletal appendage—implications for an improved understanding of the link between psoriasis and arthritis,” Dermatology, vol. 218, no. 2, pp. 97–102, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. M. Buslau, I. Menzel, and H. Holzmann, “Fungal flora of human faeces in psoriasis and atopic dermatitis,” Mycoses, vol. 33, no. 2, pp. 90–94, 1990. View at Scopus
  59. A. Waldman, A. Gilhar, L. Duek, and I. Berdicevsky, “Incidence of Candida in psoriasis—a study on the fungal flora of psoriatic patients,” Mycoses, vol. 44, no. 3-4, pp. 77–81, 2001. View at Publisher · View at Google Scholar · View at Scopus
  60. F. L. van de Veerdonk, R. J. Marijnissen, B. J. Kullberg et al., “The Macrophage Mannose Receptor Induces IL-17 in Response to Candida albicans,” Cell Host and Microbe, vol. 5, no. 4, pp. 329–340, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. S. LeibundGut-Landmann, O. Groß, M. J. Robinson et al., “Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17,” Nature Immunology, vol. 8, no. 6, pp. 630–638, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. M. J. Robinson, F. Osorio, M. Rosas et al., “Dectin-2 is a Syk-coupled pattern recognition receptor crucial for Th17 responses to fungal infection,” The Journal of Experimental Medicine, vol. 206, no. 9, pp. 2037–2051, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  63. B. Ferwerda, G. Ferwerda, T. S. Plantinga et al., “Human dectin-1 deficiency and mucocutaneous fungal infections,” The New England Journal of Medicine, vol. 361, no. 18, pp. 1760–1767, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. A. Amherd-Hoekstra, H. Näher, H. M. Lorenz, and A. H. Enk, “Psoriatic arthritis: a review,” Journal der Deutschen Dermatologischen Gesellschaft, vol. 8, no. 5, pp. 332–339, 2010.
  65. J. C. Prinz, “Psoriasis vulgaris—a sterile antibacterial skin reaction mediated by cross-reactive T cells? An immunological view of the pathophysiology of psoriasis,” Clinical and Experimental Dermatology, vol. 26, no. 4, pp. 326–332, 2001. View at Publisher · View at Google Scholar · View at Scopus
  66. C. Gota and L. Calabrese, “Induction of clinical autoimmune disease by therapeutic interferon-α,” Autoimmunity, vol. 36, no. 8, pp. 511–518, 2003. View at Publisher · View at Google Scholar · View at Scopus
  67. M. Gilliet, C. Conrad, M. Geiges et al., “Psoriasis triggered by toll-like receptor 7 agonist imiquimod in the presence of dermal plasmacytoid dendritic cell precursors,” Archives of Dermatology, vol. 140, no. 12, pp. 1490–1495, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  68. R. Lande, J. Gregorio, V. Facchinetti et al., “Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide,” Nature, vol. 449, no. 7162, pp. 564–569, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  69. R. Scarpa, A. Del Puente, C. Di Girolamo, G. Della Valle, E. Lubrano, and P. Oriente, “Interplay between environmental factors, articular involvement, and HLA-B27 in patients with psoriatic arthritis,” Annals of the Rheumatic Diseases, vol. 51, no. 1, pp. 78–79, 1992. View at Scopus
  70. D. Veale, M. Farrel, and O. Fitzgerald, “Mechanism of joint sparing in a patient with unilateral psoriatic arthritis and a longstanding hemiplegia,” British Journal of Rheumatology, vol. 32, no. 5, pp. 413–416, 1993. View at Scopus
  71. O. FitzGerald and R. Winchester, “Psoriatic arthritis: from pathogenesis to therapy,” Arthritis Research and Therapy, vol. 11, no. 1, article 214, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  72. D. D. Gladman, “Toward unraveling the mystery of psoriatic arthritis,” Arthritis and Rheumatism, vol. 36, no. 7, pp. 881–884, 1993. View at Scopus
  73. P. Costello, B. Bresnihan, C. O'Farrelly, and O. Fitzgerald, “Predominance of CD8+ T lymphocytes in psoriatic arthritis,” Journal of Rheumatology, vol. 26, no. 5, pp. 1117–1124, 1999. View at Scopus
  74. D. L. Lacey, E. Timms, H. L. Tan et al., “Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation,” Cell, vol. 93, no. 2, pp. 165–176, 1998. View at Publisher · View at Google Scholar · View at Scopus