About this Journal Submit a Manuscript Table of Contents
International Journal of Rheumatology
Volume 2013 (2013), Article ID 610393, 8 pages
http://dx.doi.org/10.1155/2013/610393
Review Article

The Role of Klebsiella in Crohn’s Disease with a Potential for the Use of Antimicrobial Measures

1Analytical Sciences Group, King’s College, 150 Stamford Street, London SE1 9NH, UK
2Departments of Microbiology and Pathology, King Edward VII Memorial Hospital, Hamilton, Bermuda

Received 22 July 2013; Accepted 4 September 2013

Academic Editor: Ruben Burgos-Vargas

Copyright © 2013 Taha Rashid et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. C. Baumgart and W. J. Sandborn, “Crohn’s disease,” The Lancet, vol. 380, no. 9853, pp. 1590–1605, 2012.
  2. G. Latella and C. Papi, “Crucial steps in the natural history of inflammatory bowel disease,” World Journal of Gastroenterology, vol. 18, no. 29, pp. 3790–3799, 2012.
  3. D. Baeten, M. Breban, R. Lories, G. Schett, and J. Sieper, “Are spondylarthritides related but distinct conditions or a single disease with a heterogeneous phenotype?” Arthritis and Rheumatism, vol. 65, no. 1, pp. 12–20, 2013.
  4. A. Ebringer and T. Rashid, “‘B27 disease’ is a new autoimmune disease that affects millions of people,” Annals of the New York Academy of Sciences, vol. 1110, pp. 112–120, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Ebringer, T. Rashid, H. Tiwana, and C. Wilson, “A possible link between Crohn's disease and ankylosing spondylitis via Klebsiella infections,” Clinical Rheumatology, vol. 26, no. 3, pp. 289–297, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Rashid, A. Ebringer, H. Tiwana, and M. Fielder, “Role of Klebsiella and collagens in Crohn's disease: a new prospect in the use of low-starch diet,” European Journal of Gastroenterology and Hepatology, vol. 21, no. 8, pp. 843–849, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Rashid, C. Wilson, and A. Ebringer, “The link between ankylosing spondylitis, Crohn’s disease, Klebsiella and starch consumption,” Clinical and Developmental Immunology, vol. 2013, Article ID 872632, 9 pages, 2013. View at Publisher · View at Google Scholar
  8. S. Guloksuz, M. Wichers, G. Kenis, et al., “Depressive symptoms in Crohn’s disease: relationship with immune activation and tryptophan availability,” PLoS ONE, vol. 8, no. 3, Article ID e60435, 2013.
  9. H. Stjernman, C. Tysk, S. Almer, M. Ström, and H. Hjortswang, “Unfavourable outcome for women in a study of health-related quality of life, social factors and work disability in Crohn's disease,” European Journal of Gastroenterology and Hepatology, vol. 23, no. 8, pp. 671–679, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. E. V. Loftus Jr., “Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences,” Gastroenterology, vol. 126, no. 6, pp. 1504–1517, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. N. A. Molodecky, I. S. Soon, D. M. Rabi et al., “Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review,” Gastroenterology, vol. 142, no. 1, pp. 46.e42–54.e42, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. F. Yi, M. Chen, M. Huang, et al., “The trend in newly diagnosed Crohn’s disease and extraintestinal manifestations of Crohn’s disease in central China: a retrospective study of a single center,” European Journal of Gastroenterology and Hepatology, vol. 24, no. 12, pp. 1424–1429, 2012.
  13. A. Frolkis, L. A. Dieleman, H. Barkema, et al., “Environment and the inflammatory bowel diseases,” Canadian Journal of Gastroenterology, vol. 27, no. 3, pp. 18–24, 2013.
  14. J. Halfvarson, “Genetics in twins with Crohn's disease: less pronounced than previously believed?” Inflammatory Bowel Diseases, vol. 17, no. 1, pp. 6–12, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Elding, W. Lau, D. M. Swallow, and N. Maniatis, “Refinement in localization and identification of gene regions associated with Crohn’s disease,” American Journal of Human Genetics, vol. 92, no. 1, pp. 107–113, 2013.
  16. S. A. Naser, M. Arce, A. Khaja et al., “Role of ATG16L, NOD2 and IL23R in Crohn's disease pathogenesis,” World Journal of Gastroenterology, vol. 18, no. 5, pp. 412–424, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. T. R. Orchard, H. Holt, L. Bradbury et al., “The prevalence, clinical features and association of HLA-B27 in sacroiliitis associated with established Crohn's disease,” Alimentary Pharmacology and Therapeutics, vol. 29, no. 2, pp. 193–197, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Braun, M. Bollow, G. Remlinger, et al., “Prevalence of spondylarthropathies in HLA-B27 positive and negative blood donors,” Arthritis and Rheumatism, vol. 41, no. 1, pp. 58–67, 1998.
  19. B. Thjodleifsson, Á. J. Geirsson, S. Björnsson, and I. Bjarnason, “A common genetic background for inflammatory bowel disease and ankylosing spondylitis: a genealogic study in Iceland,” Arthritis and Rheumatism, vol. 56, no. 8, pp. 2633–2639, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. A. B. Onderdonk, J. A. Richardson, R. E. Hammer, and J. D. Taurog, “Correlation of cecal microflora of HLA-B27 transgenic rats with inflammatory bowel disease,” Infection and Immunity, vol. 66, no. 12, pp. 6022–6023, 1998. View at Scopus
  21. E. Kuwahara, K. Asakura, Y. Nishiwaki et al., “Effects of family history on inflammatory bowel disease characteristics in Japanese patients,” Journal of Gastroenterology, vol. 47, no. 9, pp. 961–968, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. R. N. Allan, P. Pease, and J. P. Ibbotson, “Clustering of Crohn's disease in a Cotswold village,” Quarterly Journal of Medicine, vol. 59, no. 229, pp. 473–478, 1986. View at Scopus
  23. J. Aisenberg and H. D. Janowitz, “Cluster of inflammatory bowel disease in three close college friends?” Journal of Clinical Gastroenterology, vol. 17, no. 1, pp. 18–20, 1993. View at Scopus
  24. X. Li, J. Sundquist, K. Hemminki, and K. Sundquist, “Risk of inflammatory bowel disease in first- and second-generation immigrants in Sweden: a nationwide follow-up study,” Inflammatory Bowel Diseases, vol. 17, no. 8, pp. 1784–1791, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Joossens, M. Simoens, S. Vermeire, X. Bossuyt, K. Geboes, and P. Rutgeerts, “Contribution of genetic and environmental factors in the pathogenesis of Crohn's disease in a large family with multiple cases,” Inflammatory Bowel Diseases, vol. 13, no. 5, pp. 580–584, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Peyrin-Biroulet, E. V. Loftus, J.-F. Colombel, and W. J. Sandborn, “The natural history of adult crohn's disease in population-based cohorts,” American Journal of Gastroenterology, vol. 105, no. 2, pp. 289–297, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Sonnenberg, “Seasonal variation of enteric infections and inflammatory bowel disease,” Inflammatory Bowel Diseases, vol. 14, no. 7, pp. 955–959, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. F. Castiglione, M. Diaferia, F. Morace et al., “Risk factors for inflammatory bowel diseases according to the “hygiene hypothesis”: a case-control, multi-centre, prospective study in Southern Italy,” Journal of Crohn's and Colitis, vol. 6, no. 3, pp. 324–329, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. I. C. Roberts-Thomson, J. Fon, W. Uylaki, A. G. Cummins, and S. Barry, “Cells, cytokines and inflammatory bowel disease: a clinical perspective,” Expert Review of Gastroenterology and Hepatology, vol. 5, no. 6, pp. 703–716, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. S. J. Brown and L. Mayer, “The immune response in inflammatory bowel disease,” American Journal of Gastroenterology, vol. 102, no. 9, pp. 2058–2069, 2007.
  31. J. D. Taurog, J. A. Richardson, J. T. Croft et al., “The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats,” Journal of Experimental Medicine, vol. 180, no. 6, pp. 2359–2364, 1994. View at Publisher · View at Google Scholar · View at Scopus
  32. G. Bamias, A. Okazawa, J. Rivera-Nieves et al., “Commensal bacteria exacerbate intestinal inflammation but are not essential for the development of murine ileitis,” Journal of Immunology, vol. 178, no. 3, pp. 1809–1818, 2007. View at Scopus
  33. P. Ricanek, S. M. Lothe, S. A. Frye, A. Rydning, M. H. Vatn, and T. Tonjum, “Gut bacterial profile in patients newly diagnosed with treatment-naïve Crohn’s disease,” Clinical and Experimental Gastroenterology, vol. 5, pp. 173–186, 2012.
  34. T. Rashid and A. Ebringer, “Gut-mediated and HLA-B27-associated arthritis: an emphasis on ankylosing spondylitis and Crohn's disease with a proposal for the use of new treatment,” Discovery Medicine, vol. 12, no. 64, pp. 187–194, 2011. View at Scopus
  35. E. Höring, D. Göpfert, G. Schröter, and U. von Gaisberg, “Frequency and spectrum of microorganisms isolated from biopsy specimens in chronic colitis,” Endoscopy, vol. 23, no. 6, pp. 325–327, 1991.
  36. A. Plessier, J. Cosnes, J.-P. Gendre, and L. Beaugerie, “Intercurrent Klebsiella oxytoca colitis in a patient with Crohn's disease,” Gastroenterologie Clinique et Biologique, vol. 26, no. 8-9, pp. 799–800, 2002. View at Scopus
  37. B. Kleessen, A. J. Kroesen, H. J. Buhr, and M. Blaut, “Mucosal and invading bacteria in patients with inflammatory bowel disease compared with controls,” Scandinavian Journal of Gastroenterology, vol. 37, no. 9, pp. 1034–1041, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. R. S. Walmsley, A. Anthony, R. Sim, R. E. Pounder, and A. J. Wakefield, “Absence of Escherichia coli, Listeria monocytogenes, and Klebsiella pneumoniae antigens within inflammatory bowel disease tissues,” Journal of Clinical Pathology, vol. 51, no. 9, pp. 657–661, 1998. View at Scopus
  39. P. L. Schwimmbeck, D. T. Y. Yu, and M. B. A. Oldstone, “Autoantibodies to HLA B27 in the sera of HLA B27 patients with ankylosing spondylitis and Reiter's syndrome. Molecular mimicry with Klebsiella pneumoniae as potential mechanism of autoimmune disease,” Journal of Experimental Medicine, vol. 166, no. 1, pp. 173–181, 1987. View at Scopus
  40. M. Fielder, S. J. Pirt, I. Tarpey et al., “Molecular mimicry and ankylosing spondylitis: possible role of a novel sequence in pullulanase of Klebsiella pneumoniae,” FEBS Letters, vol. 369, no. 2-3, pp. 243–248, 1995. View at Publisher · View at Google Scholar · View at Scopus
  41. C. Wilson, T. Rashid, H. Tiwana et al., “Cytotoxicity responses to peptide antigens in rheumatoid arthritis and ankylosing spondylitis,” Journal of Rheumatology, vol. 30, no. 5, pp. 972–978, 2003. View at Scopus
  42. N. Paeng, A. Morikawa, Y. Kato et al., “Experimental murine model for autoimmune enterocolitis using Klebsiella pneumoniae O3 lipopolysaccharide as a potent immunological adjuvant,” Microbiology and Immunology, vol. 43, no. 1, pp. 45–52, 1999. View at Scopus
  43. K. Takahashi, Y. Kato, T. Sugiyama et al., “Production of murine collagen-induced arthritis using Klebsiella pneumoniae O3 lipopolysaccharide as a potent immunological adjuvant,” Microbiology and Immunology, vol. 43, no. 8, pp. 795–801, 1999. View at Scopus
  44. J. P. Ibbotson, P. E. Pease, and R. N. Allan, “Serological studies in Crohn's disease,” European Journal of Clinical Microbiology, vol. 6, no. 3, pp. 286–290, 1987. View at Publisher · View at Google Scholar · View at Scopus
  45. R. Cooper, S. M. Fraser, R. D. Sturrock, and C. G. Gemmell, “Raised titres of anti-Klebsiella IgA in ankylosing spondylitis, rheumatoid arthritis, and inflammatory bowel disease,” British Medical Journal, vol. 296, no. 6634, pp. 1432–1434, 1988. View at Scopus
  46. S. O'Mahony, N. Anderson, G. Nuki, and A. Ferguson, “Systemic and mucosal antibodies to Klebsiella in patients with ankylosing spondylitis and Crohn's disease,” Annals of the Rheumatic Diseases, vol. 51, no. 12, pp. 1296–1300, 1992. View at Scopus
  47. H. Tiwana, C. Wilson, R. S. Walmsley et al., “Antibody responses to gut bacteria in ankylosing spondylitis, rheumatoid arthritis, Crohn's disease and ulcerative colitis,” Rheumatology International, vol. 17, no. 1, pp. 11–16, 1997. View at Publisher · View at Google Scholar · View at Scopus
  48. H. Tiwana, R. S. Walmsley, C. Wilson et al., “Characterization of the humoral immune response to Klebsiella species in inflammatory bowel disease and ankylosing spondylitis,” British Journal of Rheumatology, vol. 37, no. 5, pp. 525–531, 1998. View at Scopus
  49. H. Tiwana, R. S. Natt, R. Benitez-Brito et al., “Correlation between the immune responses to collagens type I, III, IV and V and Klebsiella pneumoniae in patients with Crohn's disease and ankylosing spondylitis,” Rheumatology, vol. 40, no. 1, pp. 15–23, 2001. View at Scopus
  50. H. J. Flint, “The impact of nutrition on the human microbiome,” Nutrition Reviews, vol. 70, Supplement 1, pp. 10–13, 2012.
  51. K. P. Scott, S. W. Gratz, P. O. Sheridan, H. J. Flint, and S. H. Duncan, “The influence of diet on the gut microbiota,” Pharmacological Research, vol. 69, no. 1, pp. 52–60, 2013.
  52. J. X. Liu, Q. Y. Yue, B. Y. Gao, Y. Wang, Q. Li, and P. D. Zhang, “Research on microbial lipid production from potato starch wastewater as culture medium by Lipomyces starkeyi,” Water Science and Technology, vol. 67, no. 8, pp. 1802–1808, 2013.
  53. B. R. Cruz, A. S. Abraao, A. M. Lemos, and F. M. Nunes, “Chemical composition and functional properties of native chestnut starch (Castanea sativa Mill),” Carbohydrate Polymers, vol. 94, no. 1, pp. 594–602, 2013.
  54. H. Zhang, Y. Tian, Y. Bai, X. Xu, and Z. Jin, “Structure and properties of maize starch processed with a combination of α-amylase and pullulanase,” International Journal of Biological Macromolecules, vol. 52, pp. 38–44, 2013.
  55. G. Ali, C. Rihouey, D. Le Cerf, and L. Picton, “Effect of carboxymethyl groups on degradation of modified pullulan by pullulanase from Klebsiella pneumonia,” Carbohydrate Polymers, vol. 93, no. 1, pp. 109–115, 2013.
  56. S. L. Hii, J. S. Tan, T. C. Ling, and A. B. Ariff, “Pullulanase: role in starch hydrolysis and potential industrial applications,” Enzyme Research, vol. 2012, Article ID 921362, 14 pages, 2012. View at Publisher · View at Google Scholar
  57. H. Nakai, M. Kitaoka, B. Svensson, and K. Ohtsubo, “Recent development of phosphorylases possessing large potential for oligosaccharide synthesis,” Current Opinion in Chemical Biology, vol. 17, no. 2, pp. 301–309, 2013.
  58. F. Shanahan, “The colonic microbiota and colonic disease,” Current Gastroenterology Reports, vol. 14, no. 5, pp. 446–452, 2012.
  59. K. M. J. van Laere, R. Hartemink, M. Bosveld, H. A. Schols, and A. G. J. Voragen, “Fermentation of plant cell wall derived polysaccharides and their corresponding oligosaccharides by intestinal bacteria,” Journal of Agricultural and Food Chemistry, vol. 48, no. 5, pp. 1644–1652, 2000. View at Publisher · View at Google Scholar · View at Scopus
  60. H. N. Englyst and G. T. Macfarlane, “Breakdown of resistant and readily digestible starch by human gut bacteria,” Journal of the Science of Food and Agriculture, vol. 37, no. 7, pp. 699–706, 1986.
  61. I. H. Anderson, A. S. Levine, and M. D. Levitt, “Incomplete absorption of the carbohydrate in all-purpose wheat flour,” The New England Journal of Medicine, vol. 304, no. 15, pp. 891–892, 1981. View at Scopus
  62. B. Kleessen, G. Stoof, J. Proll, D. Schmiedl, J. Noack, and M. Blaut, “Feeding resistant starch affects fecal and cecal microflora and short-chain fatty acids in rats,” Journal of Animal Science, vol. 75, no. 9, pp. 2453–2462, 1997. View at Scopus
  63. A. Ebringer, M. Baines, M. Childerstone, and M. Ghuloom, “Etiopathogenesis of ankylosing spondylitis and the cross-tolerance hypothesis,” in Advances in Inflammation Research-the Spondyloarthropathies, M. Ziff and S. B. Cohen, Eds., pp. 101–128, Raven Press, New York, NY, USA, 1985.
  64. R. G. McGuire and R. D. Hagenmaier, “Shellac formulations to reduce epiphytic survival of coliform bacteria on citrus fruit postharvest,” Journal of Food Protection, vol. 64, no. 11, pp. 1756–1760, 2001. View at Scopus
  65. G. Paturi, T. Nyanhanda, C. A. Butts, T. D. Herath, J. A. Monro, and J. Ansell, “Effects of potato fiber and potato-resistant starch on biomarkers of colonic health in rats fed diets containing red meat,” Journal of Food Science, vol. 77, no. 10, pp. 216–223, 2012.
  66. C. Randall, J. Vizuete, G. Wendorf, B. Ayyar, and G. Constatine, “Current and emerging strategies in the management of Crohn’s disease,” Best Practice & Research, vol. 26, no. 5, pp. 601–610, 2013.
  67. T. Ali, S. Kaitha, S. Mahmood, A. Ftesi, J. Stone, and M. S. Bronze, “Clinical use of anti-TNF therapy and increased risk of infections,” Drug, Healthcare and Patient Safety, vol. 5, pp. 79–99, 2013.
  68. G. Kouklakis, E. I. Efremidou, M. Pitiakoudis, N. Liratzopoulos, and A. C. Polychronidis, “Development of primary malignant melanoma during treatment with a TNF-α antagonist for severe Crohn’s disease: a case report and review of the hypothetical association between TNF- α blockers and cancer,” Drug Design, Development and Therapy, vol. 7, pp. 195–199, 2013.
  69. K. C. Lu and S. R. Hunt, “Surgical management of Crohn’s disease,” The Surgical Clinics of North America, vol. 93, no. 1, pp. 167–185, 2013.
  70. P. Dewint, B. E. Hansen, E. Verhey, et al., “Adalmumab combined with ciprofloxacin is superior to adalmumab monotherapy in perianal fistula closure in Crohn’s disease: a randomised, double-blind, placebo controlled trial (ADAFI),” Gut. In press.
  71. R. S. Longmann and A. Swaminath, “Microbial manipulation as primary therapy for Crohn’s disease,” World Journal of Gastroenterology, vol. 19, no. 10, pp. 1513–1516, 2013.
  72. M. Guslandi, “Rifaximin in the treatment of inflammatory bowel disease,” World Journal of Gastroenterology, vol. 17, no. 42, pp. 4643–4646, 2011. View at Publisher · View at Google Scholar · View at Scopus
  73. K. J. Khan, T. A. Ullman, A. C. Ford et al., “Antibiotic therapy in inflammatory bowel disease: a systematic review and meta-analysis,” American Journal of Gastroenterology, vol. 106, no. 4, pp. 661–673, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. C. Prantera, H. Lochs, M. Grimaldi, S. Danese, M. L. Scribano, and P. Gionchetti, “Rifaximin-extended intestinal release induces remission in patients with moderately active crohn's disease,” Gastroenterology, vol. 142, no. 3, pp. 473–481, 2012. View at Publisher · View at Google Scholar · View at Scopus
  75. A. Ebringer and C. Wilson, “The use of a low starch diet in the treatment of patients suffering from ankylosing spondylitis,” Clinical Rheumatology, vol. 15, no. 1, pp. 62–66, 1996. View at Publisher · View at Google Scholar · View at Scopus
  76. A. Ebringer and C. Wilson, “Ankylosing spondylitis and diet,” in Food Allergy and Intolerance, J. Brostoff and S. J. Challacombe, Eds., pp. 761–768, Saunders, London, UK, 2002.