About this Journal Submit a Manuscript Table of Contents
International Journal of Reconfigurable Computing
Volume 2010 (2010), Article ID 352428, 11 pages
http://dx.doi.org/10.1155/2010/352428
Research Article

Design of a Reconfigurable Pulsed Quad-Cell for Cellular-Automata-Based Conformal Computing

1Electrical and Computer Engineering Department, North Dakota State University, Fargo, ND 58102, USA
2Center for Nanoscale Science and Engineering, North Dakota State University, Fargo, ND 58102, USA

Received 22 November 2009; Revised 1 April 2010; Accepted 28 June 2010

Academic Editor: Paul Chow

Copyright © 2010 Mariam Hoseini et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Lyke, G. Donohoe, and S. Karna, “Reconfigurable cellular array architectures for molecular electronics,” Tech. Rep. AFRL-VS-TR-2001-1039, Air Force Research Laboratory, 2001.
  2. S. Das, G. Rose, M. Ziegler, C. Picconatto, and J. Ellenbogen, “Architectures and simulations for nanoprocessor systems integrated on the molecular scale,” in Introducing Molecular Electronics, pp. 479–512, Springer, Berlin, 2005.
  3. L. M. Adleman, “Molecular computation of solutions to combinatorial problems,” Science, vol. 266, no. 5187, pp. 1021–1024, 1994. View at Scopus
  4. M. Sipper, “Emergence of cellular computing,” Computer, vol. 32, no. 7, pp. 18–26, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. P.-A. Mudry, F. Vannel, G. Tempesti, and D. Mange, “CONFETTI: a reconfigurable hardware platform for prototyping cellular architectures,” in Proceedings of the 21st International Parallel and Distributed Processing Symposium (IPDPS '07), pp. 1–8, Long Beach, Calif, USA, March 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Abelson, D. Allen, and D. Allen, “Amorphous computing,” Communications of the ACM, vol. 43, no. 5, pp. 74–82, 2000. View at Scopus
  7. H. Abelson, J. Beal, and G. Sussman, “Amorphous computing,” Tech. Rep. MIT-CSAIL-TR-2007-030, Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, Mass, USA, June, 2007.
  8. M. J. Pavicic, “Wallpaper computers: thin, flexible, extensible and R2R ready,” in Proceedings of the Flexible Electronics and Displays Conference, pp. 2–5, Phoenix, Ariz, USA, February 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Margolus, “CAM-8: a computer architecture based on cellular automata,” in Pattern Formation and Lattice Gas Automata, pp. 167–187, American Mathematical Society, 1996.
  10. T. Toffoli, “A pedestrian's introduction to spacetime crystallography,” IBM Journal of Research and Development, vol. 48, no. 1, pp. 13–29, 2004. View at Scopus
  11. N. J. Macias and P. M. Athanas, “Application of self-configurability for autonomous, highly-localized self-regulation,” in Proceedings of the 2nd NASA/ESA Conference on Adaptive Hardware and Systems (AHS '07), pp. 397–404, Edinburgh, Scotland, July 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. F. Gruau, Y. Lhuillier, P. Reitz, and O. Temam, “BLOB computing,” in Proceedings of the Computing Frontiers Conference (CF '04), pp. 125–139, Ischia, Italy, April 2004. View at Scopus
  13. L. Chua and T. Roska, Cellular Neural Networks and Visual Computing: Foundations and Applications, Cambridge University Press, New York, NY, USA, 2002.
  14. M. Hoseini, C. You, and M. J. Pavicic, “A cellular automata ASIC for conformal computing,” in Proceedings of the International Conference on Engineering of Reconfigurable Systems and Algorithms (ERSA '08), pp. 305–306, Las Vegas, Nev, USA, July 2008. View at Scopus
  15. S. Wolfram, A New Kind of Science, Wolfram Media, Pasadena, Calif, USA, 2002.
  16. P. Sarkar, “A brief history of cellular automata,” ACM Computing Surveys, vol. 32, no. 1, pp. 80–107, 2000. View at Scopus
  17. N. Ganguly, B. Sikdar, A. Deutech, G. Canright, and P. Chaudhuri, “A Survey on Cellular Automata,” February 2006, http://www.cs.unibo.it/bison/publications.
  18. S. Adachi, F. Peper, and J. Lee, “Computation by asynchronously updating cellular automata,” Journal of Statistical Physics, vol. 114, no. 1-2, pp. 261–289, 2004. View at Scopus
  19. F. Peper, J. Lee, S. Adachi, and S. Mashiko, “Laying out circuits on asynchronous cellular arrays: a step towards feasible nanocomputers?” Nanotechnology, vol. 14, no. 4, pp. 469–485, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Minnick, “A survey of microcellular tresearch,” Journal of the ACM, vol. 14, no. 2, pp. 203–241, 1967.
  21. I. E. Sutherland, “Micropipelines,” Communications of the ACM, vol. 32, no. 6, pp. 720–738, 1989. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Wong, A. Martin, and P. Thomas, “An architecture for asynchronous FPGAs,” in Proceedings of the IEEE International Conference on Field-Programmable Technology, pp. 170–177, December 2003.
  23. J. Teifel and R. Manohar, “An asynchronous dataflow FPGA architecture,” IEEE Transactions on Computers, vol. 53, no. 11, pp. 1376–1392, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Mahram, M. Najibi, and H. Pedram, “An asynchronous fpga logic cell implementation,” in Proceedings of the 17th ACM Great Lakes Symposium on VLSI, pp. 176–179, Stresa-Lago Maggiore, Italy, March 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Teifel and R. Manohar, “Highly pipelined asynchronous FPGAs,” in Proceedings of the ACM/SIGDA 12th International Symposium on Field-Programmable Gate Arrays, pp. 133–142, Monterey, Calif, USA, February 2004. View at Scopus