About this Journal Submit a Manuscript Table of Contents
International Journal of Rotating Machinery
Volume 2012 (2012), Article ID 213907, 11 pages
http://dx.doi.org/10.1155/2012/213907
Research Article

Analysis of Cavitation Instabilities in a Four-Blade Inducer

Arts et Metiers ParisTech/LML Laboratory, 8 boulevard Louis XIV, 59046 Lille Cedex, France

Received 26 December 2011; Accepted 18 April 2012

Academic Editor: Meinhard Taher Schobeiri

Copyright © 2012 O. Coutier-Delgosha et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Kamijo, T. Shimura, and M. Watanabe, “An experimental investigation of cavitating inducer Instability,” ASME Paper 77-WA/FW-14, 1977.
  2. B. Goirand, A. Mertz, F. Joussellin, and C. Rebattet, “Experimental investigation of radial loads induced by partial cavitation with liquid hydrogen inducer,” in Proceedings of the 3rd International Conference on Cavitation (ImechE '92), vol. C453/056, pp. 263–269, Cambridge, UK, 1992.
  3. J. de Bernardi, F. Rossellini, and A. Von Kaenel, “Experimental analysis of instabilities related to cavitation in turbopump inducer,” in Proceedings of the 1st International Symposium on Pump Noise and Vibrations, pp. 91–99, Paris, France, 1993.
  4. R. A. Furness and S. P. Hutton, “Experimental and theoretical studies of two-dimensional fixed-type cavities,” vol. 97, pp. 515–522, 1975. View at Scopus
  5. Q. Le, J. P. Franc, and J. M. Michel, “Partial cavities: global behavior and mean pressure distribution,” ASME Transactions Journal of Fluids Engineering, vol. 115, no. 2, pp. 243–248, 1993. View at Scopus
  6. J. B. Leroux, O. Coutier-Delgosha, and J. A. Astolfi, “A joint experimental and numerical study of mechanisms associated to instability of partial cavitation on two-dimensional hydrofoil,” Physics of Fluids, vol. 17, no. 5, article 052101, pp. 1–20, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. O. Coutier-Delgosha, B. Stutz, A. Vabre, and S. Legoupil, “Analysis of cavitating flow structure by experimental and numerical investigations,” Journal of Fluid Mechanics, vol. 578, pp. 171–222, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Tsujimoto, “Cavitation instabilities in inducers,” Tech. Rep. AVT-143 RTO AVT/VKI Lecture Series, von Karman Institute, Rhode-Saint-Genèse, Belgium, 2006.
  9. F. Joussellin, J. De Bernardi, B. Goirand, and Y. Delannoy, “Analyse par films ultrarapides de poches de cavitation sur l'Inducteur de la Turbopompe à Hydrogène d'un Moteur Fusée,” in 5ème colloque de visualisation et de traitement d'images en Mécanique des Fluides, Poitiers, France, 1992.
  10. A. Fujii, S. Azuma, Y. Yoshida, Y. Tsujimoto, H. Horiguchi, and S. Watanabe, “Higher order rotating cavitation in an inducer,” International Journal of Rotating Machinery, vol. 10, no. 4, pp. 241–251, 2004. View at Publisher · View at Google Scholar
  11. O. Coutier-Delgosha, Y. Courtot, F. Joussellin, and J. L. Reboud, “Numerical simulation of the unsteady cavitation behavior of an inducer blade cascade,” AIAA Journal, vol. 42, no. 3, pp. 560–569, 2004. View at Scopus
  12. Y. Yoshida, Y. Sasao, K. Okita, S. Hasegawa, M. Shimagaki, and T. Ikohagi, “Influence of thermodynamic effect on synchronous rotating cavitation,” ASME Transactions Journal of Fluids Engineering, vol. 129, no. 7, pp. 871–876, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. F. Bakir, S. Kouidri, R. Noguera, and R. Rey, “Experimental analysis of an axial inducer influence of the shape of the blade leading edge on the performances in cavitating regime,” ASME Transactions Journal of Fluids Engineering, vol. 125, no. 2, pp. 293–301, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Yoshida, Y. Tsujimoto, D. Kataoka, H. Horiguchi, and F. Wahl, “Effects of alternate leading edge cutback on unsteady cavitation in 4-bladed inducers,” ASME Transactions Journal of Fluids Engineering, vol. 123, no. 4, pp. 762–770, 2001. View at Scopus
  15. Y. D. Choi, J. Kurokawa, and H. Imamura, “Suppression of cavitation in inducers by J-Grooves,” ASME Transactions Journal of Fluids Engineering, vol. 129, no. 1, pp. 15–22, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Horiguchi, T. Takashina, and Y. Tsujimoto, “Theoretical analysis of cavitation in inducers with unequally spaced blades,” JSME International Journal, Series B, vol. 49, no. 2, pp. 473–481, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. O. Coutier-Delgosha, G. Caignaert, G. Bois, and J. B. Leroux, “Influence of the blade number on inducer cavitating behavior,” Journal of Fluids Engineering. In press.
  18. C. E. Brennen, “Pump vibration, concepts,” in Hydrodynamics of Pumps, chapter 8, NREC and Oxford University Press, 1994.