About this Journal Submit a Manuscript Table of Contents
International Journal of Spectroscopy
Volume 2012 (2012), Article ID 297056, 11 pages
http://dx.doi.org/10.1155/2012/297056
Research Article

Demonstrated Wavelength Portability of Raman Reference Data for Explosives and Chemical Detection

1Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99354, USA
2Dunham Research, 3251 Kemptown Church Road, Monrovia, MD 21770, USA

Received 18 February 2012; Revised 13 April 2012; Accepted 17 April 2012

Academic Editor: Augustus Way Fountain

Copyright © 2012 Timothy J. Johnson et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. R. Burling, R. J. Yokelson, S. K. Akagi et al., “Airborne and ground-based measurements of the trace gases and particles emitted by prescribed fires in the United States,” Atmospheric Chemistry and Physics, vol. 11, no. 23, pp. 12197–12216, 2011. View at Publisher · View at Google Scholar
  2. B. E. Bernacki and M. C. Phillips, “Standoff hyperspectral imaging of explosives residues using broadly tunable external cavity quantum cascade laser illumination,” in Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XI, vol. 7665, article 76650I of Proceedings of SPIE, Orlando, Fla , USA, April 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. T. J. Johnson, R. L. Sams, S. D. Burton, and T. A. Blake, “Absolute integrated intensities of vapor-phase hydrogen peroxide (H2O2) in the mid-infrared at atmospheric pressure,” Analytical and Bioanalytical Chemistry, vol. 395, no. 2, pp. 377–386, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. W. M. Wendlandt and H. G. Hecht, Reflectance Spectroscopy, Interscience Publishers, London, UK, 1966.
  5. T. J. Johnson, N. B. Valentine, and S. W. Sharpe, “Mid-infrared versus far-infrared (THz) relative intensities of room-temperature Bacillus spores,” Chemical Physics Letters, vol. 403, no. 1–3, pp. 152–157, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. D. M. Sheen, D. L. McMakin, and T. E. Hall, “Detection of Explosives by Millimeter-wave Imaging,” in Counterterrorist Detection Techniques of Explosives, J. Yinon, Ed., pp. 237–278, Elsevier, Amsterdam, The Netherlands, 2007.
  7. R. L. McCreery, “Photometric standards for Raman spectroscopy,” in Handbook of Vibrational Spectroscopy, J. M. Chalmers and P. R. Griffiths, Eds., Wiley, New York, NY, USA, 2002.
  8. J. C. Weatherall, J. Barber, C. S. Brauer, et al., “Adapting Raman spectra from laboratory spectrometers to portable detection systems,” Applied Spectroscopy.
  9. P. Vandenabeele, K. Castro, M. Hargreaves, L. Moens, J. M. Madariaga, and H. G. M. Edwards, “Comparative study of mobile Raman instrumentation for art analysis,” Analytica Chimica Acta, vol. 588, no. 1, pp. 108–116, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. N. R. Butt, M. Nilsson, A. Jakobsson et al., “Classification of Raman spectra to detect hidden explosives,” IEEE Geoscience and Remote Sensing Letters, vol. 8, no. 3, pp. 517–521, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Ehlerding, I. Johansson, S. Wallin, and H. Östmark, “Electro-optical remote sensing, photonic technologies, and applications IV,” vol. 7835, article 783507 of Proceedings of SPIE, Toulouse, France, September 2010.
  12. S. Wallin, A. Pettersson, H. Östmark, and A. Hobro, “Laser-based standoff detection of explosives: a critical review,” Analytical and Bioanalytical Chemistry, vol. 395, no. 2, pp. 259–274, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Pettersson, I. Johansson, S. Wallin, M. Nordberg, and H. Östmark, “Near real-time standoff detection of explosives in a realistic outdoor environment at 55 m distance,” Propellants, Explosives, Pyrotechnics, vol. 34, no. 4, pp. 297–306, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. M. D. Ray, A. J. Sedlacek, and M. Wu, “Ultraviolet mini-Raman lidar for stand-off, in situ identification of chemical surface contaminants,” Review of Scientific Instruments, vol. 71, no. 9, pp. 3485–3489, 2000. View at Scopus
  15. M. Wu, M. Ray, K. H. Fung, M. W. Ruckman, D. Harder, and A. J. Sedlacek, “Stand-off detection of chemicals by UV Raman spectroscopy,” Applied Spectroscopy, vol. 54, no. 6, pp. 800–806, 2000. View at Scopus
  16. B. Zachhuber, G. Ramer, A. Hobro, E. T. H. Chrysostom, and B. Lendl, “Stand-off Raman spectroscopy: a powerful technique for qualitative and quantitative analysis of inorganic and organic compounds including explosives,” Analytical and Bioanalytical Chemistry, vol. 400, no. 8, pp. 2439–2447, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. B. Zachhuber, C. Gasser, E. T. H. Chrysostom, and B. Lendl, “Stand-off Raman spectroscopy: a powerful stand-off spatial offset Raman spectroscopy for the detection of concealed content in distant objects,” Analytical Chemistry, vol. 83, no. 24, pp. 9438–9442, 2011.
  18. E. D. Emmons, A. Tripathi, J. A. Guicheteau, S. D. Christesen, and A. W. Fountain, “Raman chemical imaging of explosive-contaminated fingerprints,” Applied spectroscopy, vol. 63, no. 11, pp. 1197–1203, 2009. View at Scopus
  19. B. Schrader, A. Hoffmann, A. Simon, and J. Sawatzki, “Can a Raman renaissance be expected via the near-infrared Fourier transform technique?” Vibrational Spectroscopy, vol. 1, no. 3, pp. 239–250, 1991. View at Scopus
  20. D. B. Chase, “Fourier transform Raman spectroscopy,” Journal of the American Chemical Society, vol. 108, no. 24, pp. 7485–7488, 1986. View at Scopus
  21. D. A. Long, Raman Spectroscopy, McGraw-Hill, New York, NY, USA, 1977.
  22. S. D. Williams, T. J. Johnson, T. P. Gibbons, and C. L. Kitchens, “Relative Raman intensities in C6H6, C6D6, and C6F6: a comparison of different computational methods,” Theoretical Chemistry Accounts, vol. 117, no. 2, pp. 283–290, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. T. A. Blake, J. F. Kelly, N. B. Gallagher, P. L. Gassman, and T. J. Johnson, “Passive standoff detection of RDX residues on metal surfaces via infrared hyperspectral imaging,” Analytical and Bioanalytical Chemistry, vol. 395, no. 2, pp. 337–348, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Okuno, “Thermal effect of visible light and infra-red radiation (IR-A, IR-B AND IR-C) on the eye—a study of infra-red cataract based on a model,” Annals of Occupational Hygiene, vol. 38, no. 4, pp. 351–359, 1994. View at Scopus
  25. S. J. Choquette, E. S. Etz, W. S. Hurst, D. H. Blackburn, and S. D. Leigh, “Relative intensity correction of Raman spectrometers: NIST SRMs 2241 through 2243 for 785 nm, 532 nm, and 488 nm/514.5 nm excitation,” Applied Spectroscopy, vol. 61, no. 2, pp. 117–129, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Fryling, C. J. Frank, and R. L. McCreery, “Intensity calibration and sensitivity comparisons for CCD/Raman spectrometers,” Applied Spectroscopy, vol. 47, pp. 1965–1974, 1993.
  27. K. G. Ray and R. L. McCreery, “Simplified calibration of instrument response function for Raman spectrometers based on luminescent intensity standards,” Applied Spectroscopy, vol. 51, no. 1, pp. 108–116, 1997. View at Scopus
  28. R. Martini, C. Glazowski, E. A. Whittaker et al., “Optical free-space communications at middle infra-red wavelengths,” in Quantum Sensing and Nanophotonic Devices, M. Razeghi and G. J. Brown, Eds., vol. 5359 of Proceedings of SPIE, pp. 196–202, San Jose, Calif, USA, January 2004. View at Publisher · View at Google Scholar
  29. A. W. Fountain III, C. K. Mann, and T. J. Vickers, “Routine wavenumber calibration of an FT-Raman spectrometer,” Applied Spectroscopy, vol. 49, no. 7, pp. 1048–1053, 1995.
  30. W. S. Hurst, S. J. Choquette, and E. S. Etz, “Requirements for relative intensity correction of Raman spectra obtained by column-summing charge-coupled device data,” Applied Spectroscopy, vol. 61, no. 7, pp. 694–700, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. P. Vandenabeele, “Evaluation of a spectral searching algorithm for the comparison of Raman band positions,” Spectrochimica Acta A, vol. 80, no. 1, pp. 27–31, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. R. J. Bell, Introductory Fourier Transform Spectroscopy, Academic Press, New York, NY, USA, 1972.
  33. S. W. Sharpe, R. L. Sams, T. J. Johnson, P. M. Chu, G. C. Rhoderick, and F. R. Guenther, “Creation of 0.10 cm−1 resolution, quantitative, infrared spectral libraries for gas samples,” in Vibrational Spectroscopy-based Sensor Systems, vol. 4577 of Proceedings of SPIE, pp. 12–24, Boston, Mass, USA, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. S. W. Sharpe, T. J. Johnson, R. L. Sams, P. M. Chu, G. C. Rhoderick, and P. A. Johnson, “Gas-phase databases for quantitative infrared spectroscopy,” Applied Spectroscopy, vol. 58, no. 12, pp. 1452–1461, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. J. E. Bertie, “Specification of components, methods, and parameters in Fourier transform spectroscopy by Michelson and related interferometers: IUPAC recommendations,” Pure and Applied Chemistry, vol. 70, no. 10, pp. 2039–2045, 1998.
  36. B. Schrader, A. Hoffmann, A. Simon, R. Podschadlowski, and M. Tischer, “NIR-FT-Raman-spectroscopy, state of the art,” Journal of Molecular Structure, vol. 217, pp. 207–220, 1990. View at Scopus
  37. T. J. Johnson, R. L. Sams, T. A. Blake, S. W. Sharpe, and P. M. Chu, “Removing aperture-induced artifacts from Fourier transform infrared intensity values,” Applied Optics, vol. 41, no. 15, pp. 2831–2839, 2002. View at Scopus
  38. D. Bonen, T. J. Johnson, and S. L. Sarkar, “Characterization of principal clinker minerals by FT-Raman microspectroscopy,” Cement and Concrete Research, vol. 24, no. 5, pp. 959–965, 1994. View at Scopus
  39. J. W. C. Johns, “High resolution and the accurate measurement of intensities,” Mikrochimica Acta, vol. 93, no. 1–6, pp. 171–188, 1987. View at Publisher · View at Google Scholar · View at Scopus
  40. A. G. Maki and J. S. Wells, “Wavenumber calibration tables from heterodyne frequency measurements,” National Institute of Standards and Technology, Special Publication 821, U.S. Government Printing Office, Washington, DC, 1991, http://physics.nist.gov/PhysRefData.
  41. D. Hutsebaut, P. Vandenabeele, and L. Moens, “Evaluation of an accurate calibration and spectral standardization procedure for Raman spectroscopy,” Analyst, vol. 130, no. 8, pp. 1204–1214, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. A. W. Fountain III, T. J. Vickers, and C. K. Mann, “Factors that affect the accuracy of Raman shift measurements on multichannel spectrometers,” Applied Spectroscopy, vol. 52, no. 3, pp. 462–468, 1998. View at Scopus
  43. M. Fryling and C. J. Frank, “Intensity calibration and sensitivity comparisons for CCD/Raman spectrometers,” Applied Spectroscopy, vol. 47, no. 12, pp. 1965–1974, 1993.
  44. “Standard Guide for Testing the Resolution of a Raman Spectrometer,” ASTM E2529-06, ASTM Publication, www.astm.org/.
  45. J. B. Forrester, N. B. Valentine, Y.-F. Su, and T. J. Johnson, “Chemometric analysis of multiple species of Bacillus bacterial endospores using infrared spectroscopy: discrimination to the strain level,” Analytica Chimica Acta, vol. 651, no. 1, pp. 24–30, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. B. M. Kunkel, Y.-F Su, and R. G. Tonkyn, “Raman database considerations for near-infrared systems,” in Optics and Photonics for Counterterrorism and Crime Fighting VII, vol. 8189, article 818905 of Proceedings of SPIE, Prague, Czech Republic, September 2011.
  47. I. Geiman, M. Leona, and J. R. Lombardi, “Application of Raman spectroscopy and surface-enhanced Raman scattering to the analysis of synthetic dyes found in ballpoint pen inks,” Journal of Forensic Sciences, vol. 54, no. 4, pp. 947–952, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. M. L. Lewis, I. R. Lewis, and P. R. Griffiths, “Anti-Stokes Raman spectrometry with 1064-nm excitation: an effective instrumental approach for field detection of explosives,” Applied Spectroscopy, vol. 58, no. 4, pp. 420–427, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. N. W. Daniel Jr., I. R. Lewis, and P. R. Griffiths, “Interpretation of Raman spectra of nitro-containing explosive materials. Part II: the implementation of neural, fuzzy, and statistical models for unsupervised pattern recognition,” Applied Spectroscopy, vol. 51, no. 12, pp. 1868–1879, 1997. View at Scopus
  50. D. Patel, C. Vance, N. King, M. Jessup, and S. Sarkisov, “Preparation, fluorescence spectroscopy and AFM analysis of erbium oxide nanocolloid,” in Optical Components and Materials VI, vol. 7212, article 72121F of Proceedings of SPIE, 2009. View at Publisher · View at Google Scholar
  51. S. Heer, K. Kömpe, H.-U. Güdel, and M. Haase, “Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals,” Advanced Materials, vol. 16, no. 23-24, pp. 2102–2105, 2004. View at Publisher · View at Google Scholar