About this Journal Submit a Manuscript Table of Contents
International Journal of Spectroscopy
Volume 2012 (2012), Article ID 462901, 7 pages
http://dx.doi.org/10.1155/2012/462901
Research Article

Protein Interactions Investigated by the Raman Spectroscopy for Biosensor Applications

1Laboratoire PEC, UMR CNRS 6087, Université du Maine, A.O. Messiaen, 72085 Le Mans, France
2Laboratoire de Chimie Organique, Université de Yaoundé I, B.P 812, Yaoundé, Cameroon
3Laboratoire UCO2M, UMR CNRS 6011, Université du Maine, A.O. Messiaen, 72085 Le Mans, France
4Laboratoire CBAC, UMR CNRS GEPEA 6144, IUT Université de Nantes, 85035 La Roche Sur Yon, France

Received 24 November 2011; Revised 27 January 2012; Accepted 10 February 2012

Academic Editor: Jaan Laane

Copyright © 2012 R. P. Kengne-Momo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. A. Latour Jr., “Protein-surface interactions,” in Biomaterials: Protein-Surface Interactions: Encyclopedia of Biomaterials and Biomedical Engineering, G. E. Wnek and G. L. Bowlin, Eds., pp. 270–284, Informa Healthcare, New York, NY, USA, 2008.
  2. I. S. Moreira, P. A. Fernandes, and M. J. Ramos, “Hot spots—a review of the protein-protein interface determinant amino-acid residues,” Proteins, vol. 68, no. 4, pp. 803–812, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. J. A. Mielczarski, J. Dong, and E. Mielczarski, “Real time evaluation of composition and structure of concanavalin a adsorbed on a polystyrene surface,” Journal of Physical Chemistry B, vol. 112, no. 16, pp. 5228–5237, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. L. Jeyachandran, E. Mielczarski, B. Rai, and J. A. Mielczarski, “Quantitative and qualitative evaluation of adsorption/desorption of bovine serum albumin on hydrophilic and hydrophobic surfaces,” Langmuir, vol. 25, no. 19, pp. 11614–11620, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Rankl, T. Ruckstuhl, M. Rabe, G. R. J. Artus, A. Walser, and S. Seeger, “Conformational reorientation of immunoglobulin G during nonspecific interaction with surfaces,” ChemPhysChem, vol. 7, no. 4, pp. 837–846, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Pande, C. Pande, D. Gilg, M. Vašák, R. Callender, and J. H. R. Kägi, “Raman, infrared, and circular dichroism spectroscopic studies on metallothionein: a predominantly “turn”-containing protein,” Biochemistry, vol. 25, no. 19, pp. 5526–5532, 1986. View at Scopus
  7. Z. Q. Wen, L. Hecht, and L. D. Barron, “β-Sheet and associated turn signatures in vibrational Raman optical activity spectra of proteins,” Protein Science, vol. 3, no. 3, pp. 435–439, 1994. View at Scopus
  8. M. Malmsten, “Ellipsometry studies of fibronectin adsorption,” Colloids and Surfaces B, vol. 3, no. 6, pp. 371–381, 1995.
  9. G. J. Thomas Jr., “New structural insights from Raman spectroscopy of proteins and their assemblies,” Biopolymers, vol. 67, no. 4-5, pp. 214–225, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Tuma, “Raman spectroscopy of proteins: from peptides to large assemblies,” Journal of Raman Spectroscopy, vol. 36, no. 4, pp. 307–319, 2005. View at Publisher · View at Google Scholar
  11. J. Filik and N. Stone, “Drop coating deposition Raman spectroscopy of protein mixtures,” Analyst, vol. 132, no. 6, pp. 544–550, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. X. Peng, J. Jonas, and J. L. Silva, “Molten-globule conformation of Arc repressor monomers determined by high- pressure 1H NMR spectroscopy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 5, pp. 1776–1780, 1993. View at Scopus
  13. J. Dong, D. Dinakarpandian, and P. R. Carey, “Extending the raman analysis of biological samples to the 100 micromolar concentration range,” Applied Spectroscopy, vol. 52, no. 8, pp. 1117–1122, 1998. View at Scopus
  14. R. Goodacre, E. M. Timmins, R. Burton et al., “Rapid identification of urinary tract infection bacteria using hyperspectral whole-organism fingerprinting and artificial neural networks,” Microbiology, vol. 144, no. 5, pp. 1157–1170, 1998. View at Scopus
  15. A. M. Ahern and R. L. Garrell, “Protein-metal interactions in protein-colloid conjugates probed by surface-enhanced raman spectroscopy,” Langmuir, vol. 7, no. 2, pp. 254–261, 1991. View at Scopus
  16. S. F. El-Mashtoly, S. Yamauchi, M. Kumauchi, N. Hamada, F. Tokunaga, and M. Unno, “Structural changes during the photocycle of photoactive yellow protein monitored by ultraviolet resonance Raman spectra of tyrosine and tryptophan,” Journal of Physical Chemistry B, vol. 109, no. 49, pp. 23666–23673, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Cai and B. R. Singh, “A distinct utility of the amide III infrared band for secondary structure estimation of aqueous protein solutions using partial least squares methods,” Biochemistry, vol. 43, no. 9, pp. 2541–2549, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. R. P. Kengne-Momo, Y. L. Jeyachandran, A. Assaf et al., “A simple method of surface functionalisation for immuno-specific immobilisation of proteins,” Analytical and Bioanalytical Chemistry, vol. 398, no. 3, pp. 1249–1255, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. Z. A. Combs, S. Chang, T. Clark, S. Singamaneni, K. D. Anderson, and V. V. Tsukruk, “Label-free raman mapping of surface distribution of protein A and IgG biomolecules,” Langmuir, vol. 27, no. 6, pp. 3198–3205, 2011. View at Publisher · View at Google Scholar
  20. J. Duarte, M. T. Pacheco, R. Z. Machado, L. Silveira, R. A. Zangaro, and A. B. Villaverd, “Use of near-infrared raman spectroscopy to detect IgG and IgM antibodies against Toxoplasma gondii in serum samples of domestic cats,” Cellular and Molecular Biology, vol. 48, no. 5, pp. 585–589, 2002. View at Scopus
  21. R. Kumar, M. M. Bajaj, and B. Swaroop, “Conformational changes in the IgG molecule of lepromatous sera using laser Raman spectroscopy,” Indian Journal of Leprosy, vol. 60, no. 3, pp. 363–373, 1988. View at Scopus
  22. P. C. Painter and L. E. Mosher, “The low-frequency Raman spectrum of an antibody molecule: bovine IgG,” Biopolymers, vol. 18, no. 12, pp. 3121–3123, 1979. View at Scopus
  23. P. Daniel, P. Picart, L. Bendriaa et al., “Effects of toxic organotin compounds on bacteria investigated by micro-Raman spectroscopy,” Spectroscopy Letters, vol. 41, no. 1, pp. 19–28, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. I. Sjoholm, “Protein A from Staphylococcus aureus. Spectropolarimetric and spectrophotometric studies,” European Journal of Biochemistry, vol. 51, no. 1, pp. 55–61, 1975.
  25. M. Marquart, J. Deisenhofer, and R. Huber, “Crystallographic refinement and atomic models of the intact immunoglobulin molecule Kol and its antigen-binding fragment at 3.0 θ and 1.9 θ resolution,” Journal of Molecular Biology, vol. 141, no. 4, pp. 369–391, 1980. View at Scopus
  26. D. Naumann, “Ft-infrared and Ft-raman spectroscopy in biomedical research,” Applied Spectroscopy Reviews, vol. 36, no. 2-3, pp. 239–298, 2001. View at Publisher · View at Google Scholar
  27. G. C. Stone, U. Sjobring, L. Bjorck, J. Sjoquist, C. V. Barber, and F. A. Nardella, “The Fc binding site for streptococcal protein G is in the Cγ2-Cγ3 interface region of IgG and is related to the sites that bind staphylococcal protein A and human rheumatoid factors,” Journal of Immunology, vol. 143, no. 2, pp. 565–570, 1989. View at Scopus
  28. T. Wadayama and M. Oishi, “Surface-enhanced Raman spectral study of Au nano-particles/alkanethiol self-assembled monolayers/Au(1 1 1 ) heterostructures,” Surface Science, vol. 600, no. 18, pp. 4352–4356, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science, vol. 275, no. 5303, pp. 1102–1106, 1997. View at Publisher · View at Google Scholar · View at Scopus
  30. R. A. Reynolds III, C. A. Mirkin, and R. L. Letsinger, “Homogeneous, nanoparticle-based quantitative colorimetric detection of oligonucleotides,” Journal of the American Chemical Society, vol. 122, no. 15, pp. 3795–3796, 2000. View at Publisher · View at Google Scholar
  31. T. A. Taton, G. Lu, and C. A. Mirkin, “Two-color labeling of oligonucleotide arrays via size-selective scattering of nanoparticle probes,” Journal of the American Chemical Society, vol. 123, no. 21, pp. 5164–5165, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. C. S. Holgate, P. Jackson, P. N. Cowen, and C. C. Bird, “Immunogold-silver staining: new method of immunostaining with enhanced sensitivity,” Journal of Histochemistry and Cytochemistry, vol. 31, no. 7, pp. 938–944, 1983. View at Scopus
  33. M. Moeremans, G. Daneels, and A. Van Dijck, “Sensitive visualization of antigen-antibody reactions in dot and blot immune overlay assays with immunogold and immunogold/silver staining,” Journal of Immunological Methods, vol. 74, no. 2, pp. 353–360, 1984. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. C. Cao, R. Jin, and C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,” Science, vol. 297, no. 5586, pp. 1536–1540, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Sánchez-Cortés, J. V. García-Ramos, G. Morcillo, and A. Tinti, “Morphological study of silver colloids employed in surface-enhanced raman spectroscopy: activation when exciting in visible and near-infrared regions,” Journal of Colloid And Interface Science, vol. 175, no. 2, pp. 358–368, 1995. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Neng, M. H. Harpster, H. Zhang, J. O. Mecham, W. C. Wilson, and P. A. Johnson, “A versatile SERS-based immunoassay for immunoglobulin detection using antigen-coated gold nanoparticles and malachite green-conjugated protein A/G,” Biosensors and Bioelectronics, vol. 26, no. 3, pp. 1009–1015, 2010. View at Publisher · View at Google Scholar · View at Scopus