About this Journal Submit a Manuscript Table of Contents
International Journal of Spectroscopy
Volume 2012 (2012), Article ID 710803, 13 pages
http://dx.doi.org/10.1155/2012/710803
Research Article

Development of a Novel Embedded Relay Lens Microscopic Hyperspectral Imaging System for Cancer Diagnosis: Use of the Mice with Oral Cancer to Be the Example

1Department of Optics and Photonics, National Central University, 300 Jhongda Road, Taoyuan, Chungli 32001, Taiwan
2Department of Electrical and Computer Engineering, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
3Graduate Institute of Clinical Medical Science, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan
4Biomedical Engineering Research and Development Center, China Medical University Hospital, 2 Yuh-Der Road, Taichung 40447, Taiwan
5Department of Biochemistry, College of Medicine, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan
6Department of Pathology, China Medical University Hospital, 2 Yuh-Der Road, Taichung 40447, Taiwan
7Department of Dentistry, National Yang-Ming University, 155 Linong Street Section 2, Taipei 112, Taiwan
8Department of Pathology, China Medical University Beigang Hospital, 123 Xinde Road, Yunlin 651, Taiwan
9Department of Otolaryngology, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan
10Department of Otolaryngology Head Neck Surgery, China Medical University Hospital, 2 Yuh-Der Road, Taichung 40447, Taiwan
11Department of Mechatronic Technology, National Taiwan Normal University, 162 Heping East Road Section 1, Taipei 106, Taiwan

Received 30 June 2012; Revised 6 October 2012; Accepted 20 October 2012

Academic Editor: Mohammed A. Gondal

Copyright © 2012 Yao-Fang Hsieh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This paper develops a novel embedded relay lens microscopic hyperspectral imaging system (ERL-MHSI) with high spectral resolution (nominal spectral resolution of 2.8 nm) and spatial resolution (30 μm × 10 μm) for cancer diagnosis. The ERL-MHSI system has transmittance and fluorescence mode. The transmittance can provide the morphological information for pathological diagnosis, and the fluorescence of cells or tissue can provide the characteristic signature for identification of normal and abnormal. In this work, the development of the ERL-MHSI system is discussed and the capability of the system is demonstrated by diagnosing early stage oral cancer of twenty mice in vitro. The best sensitivity for identifying normal cells and squamous cell carcinoma (SCC) was 100%. The best specificity for identifying normal cells and SCC was 99%. The best sensitivity for identifying normal cells and dysplasia was 99%. The best specificity for identifying normal cells and dysplasia was 97%. This work also utilizes fractal dimension to analyze the morphological information and find the significant different values between normal and SCC.