About this Journal Submit a Manuscript Table of Contents
International Journal of Spectroscopy
Volume 2012 (2012), Article ID 710803, 13 pages
http://dx.doi.org/10.1155/2012/710803
Research Article

Development of a Novel Embedded Relay Lens Microscopic Hyperspectral Imaging System for Cancer Diagnosis: Use of the Mice with Oral Cancer to Be the Example

1Department of Optics and Photonics, National Central University, 300 Jhongda Road, Taoyuan, Chungli 32001, Taiwan
2Department of Electrical and Computer Engineering, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
3Graduate Institute of Clinical Medical Science, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan
4Biomedical Engineering Research and Development Center, China Medical University Hospital, 2 Yuh-Der Road, Taichung 40447, Taiwan
5Department of Biochemistry, College of Medicine, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan
6Department of Pathology, China Medical University Hospital, 2 Yuh-Der Road, Taichung 40447, Taiwan
7Department of Dentistry, National Yang-Ming University, 155 Linong Street Section 2, Taipei 112, Taiwan
8Department of Pathology, China Medical University Beigang Hospital, 123 Xinde Road, Yunlin 651, Taiwan
9Department of Otolaryngology, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan
10Department of Otolaryngology Head Neck Surgery, China Medical University Hospital, 2 Yuh-Der Road, Taichung 40447, Taiwan
11Department of Mechatronic Technology, National Taiwan Normal University, 162 Heping East Road Section 1, Taipei 106, Taiwan

Received 30 June 2012; Revised 6 October 2012; Accepted 20 October 2012

Academic Editor: Mohammed A. Gondal

Copyright © 2012 Yao-Fang Hsieh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. T. Willoughby, M. A. Folkman, and M. A. Figueroa, “Application of hyperspectral imaging spectrometer systems to industrial inspection,” in Three-Dimensional and Unconventional Imaging for Industrial Inspection and Metrology, vol. 2599 of Proceedings of SPIE, pp. 264–272, October 1995. View at Scopus
  2. B. Khoobehi, J. M. Beach, and H. Kawano, “Hyperspectral imaging for measurement of oxygen saturation in the optic nerve head,” Investigative Ophthalmology and Visual Science, vol. 45, no. 5, pp. 1464–1472, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. W. R. Johnson, D. W. Wilson, W. Fink, M. Humayun, and G. Bearman, “Snapshot hyperspectral imaging in ophthalmology,” Journal of Biomedical Optics, vol. 12, no. 1, Article ID 014036, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. B. Farina, C. Bartoli, A. Bono et al., “Multispectral imaging approach in the diagnosis of cutaneous melanoma: potentiality and limits,” Physics in Medicine and Biology, vol. 45, no. 5, pp. 1243–1254, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. L. L. Randeberg, I. Baarstad, T. Løke, P. Kaspersen, and L. O. Svaasand, “Hyperspectral imaging of bruised skin,” in Photonic Therapeutics and Diagnostics II, vol. 6078 of Proceedings of SPIE, p. 60780O, January 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. G. N. Stamatas and N. Kollias, “In vivo documentation of cutaneous inflammation using spectral imaging,” Journal of Biomedical Optics, vol. 12, no. 5, Article ID 051603, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Vogel, V. V. Chernomordik, J. D. Riley et al., “Using noninvasive multispectral imaging to quantitatively assess tissue vasculature,” Journal of Biomedical Optics, vol. 12, no. 5, Article ID 051604, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. D. G. Ferris, R. A. Lawhead, E. D. Dickman et al., “Multimodal hyperspectral imaging for the noninvasive diagnosis of cervical neoplasia,” Journal of Lower Genital Tract Disease, vol. 5, no. 2, pp. 65–72, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. M. E. Martin, M. B. Wabuyele, K. Chen et al., “Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection,” Annals of Biomedical Engineering, vol. 34, no. 6, pp. 1061–1068, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. B. S. Sorg, M. E. Hardee, N. Agarwal, B. J. Moeller, and M. W. Dewhirst, “Spectral imaging facilitates visualization and measurements of unstable and abnormal microvascular oxygen transport in tumors,” Journal of Biomedical Optics, vol. 13, no. 1, Article ID 014026, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Schultz, T. Nielsen, J. Zavaleta, R. Ruch, R. Wyatt, and H. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry, vol. 43, no. 4, pp. 239–247, 2001.
  12. K. Onizawa, H. Saginoya, Y. Furuya, and H. Yoshida, “Fluorescence photography as a diagnostic method for oral cancer,” Cancer Letters, vol. 108, no. 1, pp. 61–66, 1996. View at Publisher · View at Google Scholar · View at Scopus
  13. G. J. Tearney, R. H. Webb, and B. E. Bouma, “Spectrally encoded confocal microscopy,” Optics Letters, vol. 23, no. 15, pp. 1152–1154, 1998. View at Scopus
  14. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Optics Express, vol. 11, no. 22, pp. 2953–2963, 2003. View at Scopus
  15. D. Yelin, C. Boudoux, B. E. Bouma, and G. J. Tearney, “Large area confocal microscopy,” Optics Letters, vol. 32, no. 9, pp. 1102–1104, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. A. M. Siddiqi, H. Li, F. Faruque et al., “Use of hyperspectral imaging to distinguish normal, precancerous, and cancerous cells,” Cancer Cytopathology, vol. 114, no. 1, pp. 13–21, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. M. E. Martin, M. B. Wabuyele, M. Panjehpour, M. N. Phan, B. F. Overholt, and T. V. Dinh, “Hyperspectral fluorescence imaging system for biomedical diagnostics,” in Advanced Biomedical and Clinical Diagnostic Systems IV, vol. 6080 of Proceedings of SPIE, p. 60800Q, January 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Akbari, K. Uto, Y. Kosugi, K. Kojima, and N. Tanaka, “Cancer detection using infrared hyperspectral imaging,” Cancer Science, vol. 102, no. 4, pp. 852–857, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Masood, N. Rajpoot, K. Rajpoot, and H. Qureshi, “Hyperspectral colon tissue classification using morphological analysis,” in Proceedings of the 2nd Annual International Conference on Emerging Techonologies (ICET '06), pp. 735–741, Peshawar, Pakistan, November 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. F. Hsieh, M. Ou-Yang, and C. C. Lee, “Finite conjugate embedded relay lens hyperspectral imaging system,” Applied Optics, vol. 50, no. 33, pp. 6198–66205, 2011. View at Publisher · View at Google Scholar
  21. American Cancer Society, Cancer facts & figures 2012, http://www.cancer.org/acs/groups/content/@epidemiologysurveilance/documents/document/acspc-031941.pdf.
  22. N. W. Chang, R. J. Pei, H. C. Tseng et al., “Co-treating with arecoline and 4-nitroquinoline 1-oxide to establish a mouse model mimicking oral tumorigenesis,” Chemico-Biological Interactions, vol. 183, no. 1, pp. 231–237, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. F. Kenneth, Fractal Geometry, John Wiley & Sons, 2003.