About this Journal Submit a Manuscript Table of Contents
International Journal of Vascular Medicine
Volume 2012 (2012), Article ID 404025, 10 pages
http://dx.doi.org/10.1155/2012/404025
Research Article

Involvement of Inflammation and Adverse Vascular Remodelling in the Blood Pressure Raising Effect of Repeatedly Heated Palm Oil in Rats

1Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia
2Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia
3Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia

Received 3 March 2012; Accepted 12 April 2012

Academic Editor: Masaki Mogi

Copyright © 2012 Chun-Yi Ng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Abdullah, M. S. Suondoh, C. S. Xuan et al., “Level of awareness amongst the general public regarding usage of repeatedly heated cooking oil in Kuala Lumpur, Malaysia,” International Medical Journal, vol. 17, no. 4, pp. 310–311, 2010. View at Scopus
  2. M. J. A. Williams, W. H. F. Sutherland, M. P. McCormick, S. A. De Jong, R. J. Walker, and G. T. Wilkins, “Impaired endothelial function following a meal rich in used cooking fat,” Journal of the American College of Cardiology, vol. 33, no. 4, pp. 1050–1055, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. F. Soriguer, G. Rojo-Martínez, M. C. Dobarganes et al., “Hypertension is related to the degradation of dietary frying oils,” The American Journal of Clinical Nutrition, vol. 78, no. 6, pp. 1092–1097, 2003. View at Scopus
  4. X. F. Leong, A. Aishah, U. Nor Aini, S. Das, and K. Jaarin, “Heated palm oil causes rise in blood pressure and cardiac changes in heart muscle in experimental rats,” Archives of Medical Research, vol. 39, no. 6, pp. 567–572, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. D. G. Harrison, M. C. Gongora, T. J. Guzik, and J. Widder, “Oxidative stress and hypertension,” Journal of the American Society of Hypertension, vol. 1, no. 1, pp. 30–44, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Pennathur and J. W. Heinecke, “Oxidative stress and endothelial dysfunction in vascular disease,” Current Diabetes Reports, vol. 7, no. 4, pp. 257–264, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Zalba, A. Fortuño, G. San José, M. U. Moreno, O. Beloqui, and J. Díez, “Oxidative stress, endothelial dysfunction and cerebrovascular disease,” Cerebrovascular Diseases, vol. 24, no. 1, pp. 24–29, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. F. A. Ghanem and A. Movahed, “Inflammation in high blood pressure: a clinician perspective,” Journal of the American Society of Hypertension, vol. 1, no. 2, pp. 113–119, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. C. U. Chae, R. T. Lee, N. Rifai, and P. M. Ridker, “Blood pressure and inflammation in apparently healthy men,” Hypertension, vol. 38, no. 3, pp. 399–403, 2001. View at Scopus
  10. A. A. Elmarakby, J. Faulkner, S. P. Posey, and J. C. Sullivan, “Induction of hemeoxygenase-1 attenuates the hypertension and renal inflammation in spontaneously hypertensive rats,” Pharmacological Research, vol. 62, no. 5, pp. 400–407, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. L. E. Bautista, “Inflammation, endothelial dysfunction, and the risk of high blood pressure: epidemiologic and biological evidence,” Journal of Human Hypertension, vol. 17, no. 4, pp. 223–230, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Balakumar, T. Kaur, and M. Singh, “Potential target sites to modulate vascular endothelial dysfunction: current perspectives and future directions,” Toxicology, vol. 245, no. 1-2, pp. 49–64, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. F. Grover-Páez and A. B. Zavalza-Gómez, “Endothelial dysfunction and cardiovascular risk factors,” Diabetes Research and Clinical Practice, vol. 84, no. 1, pp. 1–10, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Chiba and O. Ezaki, “Dietary restriction suppresses inflammation and delays the onset of stroke in stroke-prone spontaneously hypertensive rats,” Biochemical and Biophysical Research Communications, vol. 399, no. 1, pp. 98–103, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. A. S. Postadzhiyan, A. V. Tzontcheva, I. Kehayov, and B. Finkov, “Circulating soluble adhesion molecules ICAM-1 and VCAM-1 and their association with clinical outcome, troponin T and C-reactive protein in patients with acute coronary syndromes,” Clinical Biochemistry, vol. 41, no. 3, pp. 126–133, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Constans and C. Conri, “Circulating markers of endothelial function in cardiovascular disease,” Clinica Chimica Acta, vol. 368, no. 1-2, pp. 33–47, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. J. T. Parissis, K. F. Venetsanou, D. G. Mentzikof et al., “Plasma levels of soluble cellular adhesion molecules in patients with arterial hypertension. Correlations with plasma endothelin-1,” European Journal of Internal Medicine, vol. 12, no. 4, pp. 350–356, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Cottone, G. Mulè, E. Nardi et al., “Relation of C-reactive protein to oxidative stress and to endothelial activation in essential hypertension,” American Journal of Hypertension, vol. 19, no. 3, pp. 313–318, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. J. J. Lozano-Nuevo, T. Estrada-Garcia, H. Vargas-Robles, B. A. Escalante-Acosta, and A. F. Rubio-Guerra, “Correlation between circulating adhesion molecules and resistin levels in hypertensive type-2 diabetic patients,” Inflammation & Allergy—Drug Targets, vol. 10, no. 1, pp. 27–31, 2011. View at Scopus
  20. A. Azlan, K. N. Prasad, H. E. Khoo et al., “Comparison of fatty acids, vitamin E and physicochemical properties of Canarium odontophyllum Miq. (dabai), olive and palm oils,” Journal of Food Composition and Analysis, vol. 23, no. 8, pp. 772–776, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. D. U. Owu, E. E. Osim, and P. E. Ebong, “Serum liver enzymes profile of Wistar rats following chronic consumption of fresh or oxidized palm oil diets,” Acta Tropica, vol. 69, no. 1, pp. 65–73, 1998. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Fernandes-Santos, L. D. S. Mendonça, and C. A. Mandarim-de-Lacerda, “Favorable cardiac and aortic remodeling in olmesartan-treated spontaneously hypertensive rats,” Heart and Vessels, vol. 24, no. 3, pp. 219–227, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. J. D. A. Moraes-Teixeira, A. Félix, C. Fernandes-Santos, A. S. Moura, C. A. Mandarim-de-Lacerda, and J. J. de Carvalho, “Exercise training enhances elastin, fibrillin and nitric oxide in the aorta wall of spontaneously hypertensive rats,” Experimental and Molecular Pathology, vol. 89, no. 3, pp. 351–357, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. C. A. Mandarim-de-Lacerda, C. Fernandes-Santos, and M. B. Aguila, “Image analysis and quantitative morphology,” Methods in Molecular Biology, vol. 611, pp. 211–225, 2010. View at Scopus
  25. E. E. Osim, D. U. Owu, and K. M. Etta, “Arterial pressure and lipid profile in rats following chronic ingestion of palm oil diets,” African Journal of Medicine and Medical Sciences, vol. 25, no. 4, pp. 335–340, 1996. View at Scopus
  26. E. N. Frankel, “Lipid oxidation,” Progress in Lipid Research, vol. 19, no. 1-2, pp. 1–22, 1980. View at Scopus
  27. S. K. Adam, N. A. Sulaiman, A. G. Mat Top, and K. Jaarin, “Heating reduces vitamin E content in palm and soy oils,” Malaysian Journal of Biochemistry and Molecular Biology, vol. 15, no. 2, pp. 76–79, 2007.
  28. S. K. Adam, I. N. Soelaiman, N. A. Umar, N. Mokhtar, N. Mohamed, and K. Jaarin, “Effects of repeatedly heated palm oil on serum lipid profile, lipid peroxidation and homocysteine levels in a post-menopausal rat model,” McGill Journal of Medicine, vol. 11, no. 2, pp. 145–151, 2008. View at Scopus
  29. S. H. H. Chan, M. H. Tai, C. Y. Li, and J. Y. H. Chan, “Reduction in molecular synthesis or enzyme activity of superoxide dismutases and catalase contributes to oxidative stress and neurogenic hypertension in spontaneously hypertensive rats,” Free Radical Biology and Medicine, vol. 40, no. 11, pp. 2028–2039, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. D. Narang, S. Sood, M. K. Thomas, A. K. Dinda, and S. K. Maulik, “Effect of dietary palm olein oil on oxidative stress associated with ischemic-reperfusion injury in isolated rat heart,” BMC Pharmacology, vol. 4, article 29, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. F. J. Medeiros, C. G. Mothé, M. B. Aguila, and C. A. Mandarim-De-Lacerda, “Long-term intake of edible oils benefits blood pressure and myocardial structure in spontaneously hypertensive rat (SHR) and streptozotocin diabetic SHR,” Prostaglandins & Other Lipid Mediators, vol. 78, no. 1–4, pp. 231–248, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. S. P. Muharis, A. G. M. Top, D. Murugan, and M. R. Mustafa, “Palm oil tocotrienol fractions restore endothelium dependent relaxation in aortic rings of streptozotocin-induced diabetic and spontaneously hypertensive rats,” Nutrition Research, vol. 30, no. 3, pp. 209–216, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. A. A. Ganafa, R. R. Socci, D. Eatman, N. Silvestrov, I. K. Abukhalaf, and M. A. Bayorh, “Effect of palm oil on oxidative stress-induced hypertension in sprague-dawley rats,” American Journal of Hypertension, vol. 15, no. 8, pp. 725–731, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. H. D. Intengan and E. L. Schiffrin, “Vascular remodeling in hypertension: roles of apoptosis, inflammation, and fibrosis.,” Hypertension, vol. 38, no. 3, part 2, pp. 581–587, 2001. View at Scopus
  35. B. Eržen, M. Šabovič, M. Šebeštjen, and P. Poredoš, “Endothelial dysfunction, intima-media thickness, ankle-brachial pressure index, and pulse pressure in young post-myocardial infarction patients with various expressions of classical risk factors,” Heart and Vessels, vol. 22, no. 4, pp. 215–222, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. X. F. Leong, M. N. M. Najib, S. Das, M. R. Mustafa, and K. Jaarin, “Intake of repeatedly heated palm oil causes elevation in blood pressure with impaired vasorelaxation in rats,” The Tohoku Journal of Experimental Medicine, vol. 219, no. 1, pp. 71–78, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. S. M. Arribas, A. Hinek, and M. C. González, “Elastic fibres and vascular structure in hypertension,” Pharmacology & Therapeutics, vol. 111, no. 3, pp. 771–791, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. T. Nakaki and R. Kato, “Nitric oxide in vascular remodeling,” Japanese Heart Journal, vol. 37, no. 4, pp. 431–445, 1996. View at Scopus
  39. H. D. Intengan, G. Thibault, J. S. Li, and E. L. Schiffrin, “Resistance artery mechanics, structure, and extracellular components in spontaneously hypertensive rats: effects of angiotensin receptor antagonism and converting enzyme inhibition,” Circulation, vol. 100, no. 22, pp. 2267–2275, 1999. View at Scopus
  40. J. M. Cook-Mills, “VCAM-1 signals during lymphocyte migration: role of reactive oxygen species,” Molecular Immunology, vol. 39, no. 9, pp. 499–508, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. C. Garrido-Polonio, M. C. García-Linares, M. T. García-Arias et al., “Thermally oxidised sunflower-seed oil increases liver and serum peroxidation and modifies lipoprotein composition in rats,” British Journal of Nutrition, vol. 92, no. 2, pp. 257–265, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. C. F. Rueda-Clausen, F. A. Silva, M. A. Lindarte et al., “Olive, soybean and palm oils intake have a similar acute detrimental effect over the endothelial function in healthy young subjects,” Nutrition, Metabolism and Cardiovascular Diseases, vol. 17, no. 1, pp. 50–57, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. A. K. Das, R. Babylatha, A. S. Pavithra, and S. Khatoon, “Thermal degradation of groundnut oil during continuous and intermittent frying,” Journal of Food Science and Technology. In press. View at Publisher · View at Google Scholar
  44. M. D. Juárez, C. C. Osawa, M. E. Acuña, N. Sammán, and L. A. G. Gonçalves, “Degradation in soybean oil, sunflower oil and partially hydrogenated fats after food frying, monitored by conventional and unconventional methods,” Food Control, vol. 22, no. 12, pp. 1920–1927, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. I. Staprāns, J. H. Rapp, X. M. Pan, and K. R. Feingold, “The effect of oxidized lipids in the diet on serum lipoprotein peroxides in control and diabetic rats,” The Journal of Clinical Investigation, vol. 92, no. 2, pp. 638–643, 1993. View at Scopus
  46. B. Hennig and C. K. Chow, “Lipid peroxidation and endothelial cell injury: implications in atherosclerosis,” Free Radical Biology & Medicine, vol. 4, no. 2, pp. 99–106, 1988. View at Scopus
  47. K. Irani, “Oxidant signaling in vascular cell growth, death, and survival: a review of the roles of reactive oxygen species in smooth muscle and endothelial cell mitogenic and apoptotic signaling,” Circulation Research, vol. 87, no. 3, pp. 179–183, 2000. View at Scopus
  48. H. Li, M. Han, L. Guo, G. Li, and N. Sang, “Oxidative stress, endothelial dysfunction and inflammatory response in rat heart to NO2 inhalation exposure,” Chemosphere, vol. 82, no. 11, pp. 1589–1596, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. X. Chen, H. Y. Zhong, J. H. Zeng, and J. Ge, “The pharmacological effect of polysaccharides from Lentinus edodes on the oxidative status and expression of VCAM-1mRNA of thoracic aorta endothelial cell in high-fat-diet rats,” Carbohydrate Polymers, vol. 74, no. 3, pp. 445–450, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. Y. W. Lee, H. Kühn, B. Hennig, A. S. Neish, and M. Toborek, “IL-4-induced oxidative stress upregulates VCAM-1 gene expression in human endothelial cells,” Journal of Molecular and Cellular Cardiology, vol. 33, no. 1, pp. 83–94, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. C. Tikellis, K. A. Jandeleit-Dahm, K. Sheehy et al., “Reduced plaque formation induced by rosiglitazone in an STZ-diabetes mouse model of atherosclerosis is associated with downregulation of adhesion molecules,” Atherosclerosis, vol. 199, no. 1, pp. 55–64, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. Y. Wu, R. Zhang, C. Zhou et al., “Enhanced expression of vascular cell adhesion molecule-1 by corticotrophin-releasing hormone contributes to progression of atherosclerosis in LDL receptor-deficient mice,” Atherosclerosis, vol. 203, no. 2, pp. 360–370, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. S. E. Choi, H. J. Jang, Y. Kang et al., “Atherosclerosis induced by a high-fat diet is alleviated by lithium chloride via reduction of VCAM expression in ApoE-deficient mice,” Vascular Pharmacology, vol. 53, no. 5-6, pp. 264–272, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. M. S. Boulbou, G. N. Koukoulis, E. D. Makri, E. A. Petinaki, K. I. Gourgoulianis, and A. E. Germenis, “Circulating adhesion molecules levels in type 2 diabetes mellitus and hypertension,” International Journal of Cardiology, vol. 98, no. 1, pp. 39–44, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. E. K. Iliodromitis, I. Andreadou, S. Markantonis-Kyroudis et al., “The effects of tirofiban on peripheral markers of oxidative stress and endothelial dysfunction in patients with acute coronary syndromes,” Thrombosis Research, vol. 119, no. 2, pp. 167–174, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. H. W. Tan, X. Liu, X. P. Bi et al., “IL-18 overexpression promotes vascular inflammation and remodeling in a rat model of metabolic syndrome,” Atherosclerosis, vol. 208, no. 2, pp. 350–357, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. M. J. Mulvany, “Small artery remodeling and significance in the development of hypertension,” News in Physiological Sciences, vol. 17, no. 3, pp. 105–109, 2002. View at Scopus
  58. D. O. Edem, “Palm oil: biochemical, physiological, nutritional, hematological, and toxicological aspects: a review,” Plant Foods for Human Nutrition, vol. 57, no. 3-4, pp. 319–341, 2002. View at Publisher · View at Google Scholar · View at Scopus