About this Journal Submit a Manuscript Table of Contents
International Journal of Vascular Medicine
Volume 2012 (2012), Article ID 903107, 9 pages
http://dx.doi.org/10.1155/2012/903107
Review Article

Assessments of Arterial Stiffness and Endothelial Function Using Pulse Wave Analysis

1School of Sport and Exercise, Massey University, P.O. Box 756, Wellington 6140, New Zealand
2Lipid and Diabetes Research Group, Diabetes Research Institute, Christchurch Hospital, Christchurch 8011, New Zealand
3Department of Medicine, University of Otago, Christchurch 8140, New Zealand
4School of Sciences and Physical Education, University of Canterbury, Christchurch 8140, New Zealand

Received 29 September 2011; Revised 16 February 2012; Accepted 2 March 2012

Academic Editor: Robert M. Schainfeld

Copyright © 2012 Lee Stoner et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. American Heart Association, eart Disease and Stroke Statistics—2006 Update, American Heart Association, 2006.
  2. G. S. Berenson, S. R. Srinivasan, W. Bao, W. P. Newman III, R. E. Tracyand, and W. A. Wattigney, “Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa Heart Study,” The New England Journal of Medicine, vol. 338, no. 3, pp. 1650–1656, 1998.
  3. C. Vlachopoulos, K. Aznaouridis, M. F. O'Rourke, M. E. Safar, K. Baou, and C. Stefanadis, “Prediction of cardiovascular events and all-cause mortality with central haemodynamics: a systematic review and meta-analysis,” European Heart Journal, vol. 31, no. 15, pp. 1865–1871, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. B. Williams, P. S. Lacy, S. M. Thom et al., “Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: principal results of the Conduit Artery Function Evaluation (CAFE) study,” Circulation, vol. 113, no. 9, pp. 1213–1225, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Vlachopoulosand and M. O'Rourke, “Genesis of the normal and abnormal arterial pulse,” Current Problems in Cardiology, vol. 25, no. 5, pp. 303–367, 2000.
  6. P. J. Chowienczyk, R. P. Kelly, H. MacCallum et al., “Photoplethysmographic assessment of pulse wave reflection: blunted response to endothelium-dependent beta2-adrenergic vasodilation in type II diabetes mellitus,” Journal of the American College of Cardiology, vol. 34, no. 7, pp. 2007–2014, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. I. B. Wilkinson, I. R. Hall, H. MacCallum et al., “Pulse-wave analysis: clinical evaluation of a noninvasive, widely applicable method for assessing endothelial function,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 22, no. 1, pp. 147–152, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. C. S. Hayward, M. Kraidly, C. M. Webband, and P. Collins, “Assessment of endothelial function using peripheral waveform analysis: a clinical application,” Journal of the American College of Cardiology, vol. 40, no. 3, pp. 521–528, 2002.
  9. J. Kals, P. Kampus, M. Kals, A. Pulges, R. Teesalu, and M. Zilmer, “Effects of stimulation of nitric oxide synthesis on large artery stiffness in patients with peripheral arterial disease,” Atherosclerosis, vol. 185, no. 2, pp. 368–374, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Schroeder, M. D. Enderle, R. Ossen et al., “Noninvasive determination of endothelium-mediated vasodilation as a screening test for coronary artery disease: pilot study to assess the predictive value in comparison with angina pectoris, exercise electrocardiography, and myocardial perfusion imaging,” American Heart Journal, vol. 138, no. 4, pp. 731–739, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Heitzer, T. Schlinzig, K. Krohn, T. Meinertz, and T. Münzel, “Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease,” Circulation, vol. 104, no. 22, pp. 2673–2678, 2001. View at Scopus
  12. T. Neunteufl, S. Heher, R. Katzenschlager et al., “Late prognostic value of flow-mediated dilation in the brachial artery of patients with chest pain,” American Journal of Cardiology, vol. 86, no. 2, pp. 207–210, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Inaba, J. A. Chen, and S. R. Bergmann, “Prediction of future cardiovascular outcomes by flow-mediated vasodilatation of brachial artery: a meta-analysis,” International Journal of Cardiovascular Imaging, vol. 26, no. 6, pp. 631–640, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. M. L. Hijmering, E. S. G. Stroes, G. Pasterkamp, M. Sierevogel, J. D. Banga, and T. J. Rabelink, “Variability of flow mediated dilation: consequences for clinical application,” Atherosclerosis, vol. 157, no. 2, pp. 369–373, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. R. J. Woodman, D. A. Playford, G. F. Watts et al., “Improved analysis of brachial artery ultrasound using a novel edge-detection software system,” Journal of Applied Physiology, vol. 91, no. 2, pp. 929–937, 2001. View at Scopus
  16. N. M. De Roos, M. L. Bots, E. G. Schouten, and M. B. Katan, “Within-subject variability of flow-mediated vasodilation of the brachial artery in healthy men and women: implications for experimental studies,” Ultrasound in Medicine and Biology, vol. 29, no. 3, pp. 401–406, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. H. A. Walker, G. Jackson, J. M. Ritter, and P. J. Chowienczyk, “Assessment of forearm vasodilator responses to acetylcholine and albuterol by strain gauge plethysmography: reproducibility and influence of strain gauge placement,” British Journal of Clinical Pharmacology, vol. 51, no. 3, pp. 225–229, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. D. H. J. Thijssen, M. W. P. Bleeker, P. Smits, and M. T. E. Hopman, “Reproducibility of blood flow and post-occlusive reactive hyperaemia as measured by venous occlusion plethysmography,” Clinical Science, vol. 108, no. 2, pp. 151–157, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. M. A. Alomari, A. Solomito, R. Reyes, S. M. Khalil, R. H. Wood, and M. A. Welsch, “Measurements of vascular function using strain-gauge plethysmography: technical considerations, standardization, and physiological findings,” American Journal of Physiology, vol. 286, no. 1, pp. H99–H107, 2004. View at Scopus
  20. I. B. Wilkinsonand and D. J. Webb, “Venous occlusion plethysmography in cardiovascular research: methodology and clinical applications,” British Journal of Clinical Pharmacology, vol. 52, no. 6, pp. 631–646, 2001.
  21. I. J. Kullo and A. R. Malik, “Arterial ultrasonography and tonometry as adjuncts to cardiovascular risk stratification,” Journal of the American College of Cardiology, vol. 49, no. 13, pp. 1413–1426, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. A. J. Nelson, S. G. Worthley, J. D. Cameron et al., “Cardiovascular magnetic resonance-derived aortic distensibility: validation and observed regional differences in the elderly,” Journal of Hypertension, vol. 27, no. 3, pp. 535–542, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Ohayon, A. M. Gharib, A. Garcia, et al., “Is arterial wall-strain stiffening an additional process responsible for atherosclerosis in coronary bifurcations?: an in vivo study based on dynamic CT and MRI,” American Journal of Physiology, vol. 301, no. 3, pp. H1097–H1106, 2011.
  24. J. Calabia, P. Torguet, M. Garcia et al., “Doppler ultrasound in the measurement of pulse wave velocity: agreement with the Complior method,” Cardiovascular Ultrasound, vol. 9, no. 1, article 13, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. H. B. Grotenhuis, J. J. M. Westenberg, P. Steendijk et al., “Validation and reproducibility of aortic pulse wave velocity as assessed with velocity-encoded MRI,” Journal of Magnetic Resonance Imaging, vol. 30, no. 3, pp. 521–526, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. B. Jiang, B. Liu, K. L. McNeill, and P. J. Chowienczyk, “Measurement of pulse wave velocity using pulse wave Doppler ultrasound: comparison with arterial tonometry,” Ultrasound in Medicine and Biology, vol. 34, no. 3, pp. 509–512, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Benetos, L. Joly, C. Perret-Guillaume et al., “Pulse wave velocity assessment by external noninvasive devices and phase-contrast magnetic resonance imaging in the obese,” Hypertension, vol. 54, no. 2, pp. 421–426, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Koivistoinen, M. Virtanen, N. Hutri-Kahonen, et al., “Arterial pulse wave velocity in relation to carotid intima-media thickness, brachial flow-mediated dilation and carotid artery distensibility: the Cardiovascular Risk in Young Finns Study and the Health 2000 Survey,” Atherosclerosis, vol. 220, no. 2, pp. 387–393, 2012.
  29. E. Laffon, R. Marthan, M. Montaudon, V. Latrabe, F. Laurent, and D. Ducassou, “Feasibility of aortic pulse pressure and pressure wave velocity MRI measurement in young adults,” Journal of Magnetic Resonance Imaging, vol. 21, no. 1, pp. 53–58, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Tillin, J. Chambers, I. Malik et al., “Measurement of pulse wave velocity: site matters,” Journal of Hypertension, vol. 25, no. 2, pp. 383–389, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. M. U. R. Naidu, B. M. Reddy, S. Yashmaina, A. N. Patnaik, and P. U. Rani, “Validity and reproducibility of arterial pulse wave velocity measurement using new device with oscillometric technique: a pilot study,” BioMedical Engineering Online, vol. 4, article 49, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. E. M. van Leeuwen-Segarceanu, W. F. Tromp, W. J. W. Bos, O. J. M. Vogels, J. W. Groothoff, and J. H. Van Der Lee, “Comparison of two instruments measuring carotid-femoral pulse wave velocity: vicorder versus SphygmoCor,” Journal of Hypertension, vol. 28, no. 8, pp. 1687–1691, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. I. G. Horvath, A. Nemeth, Z. Lenkey, et al., “Invasive validation of a new oscillometric device (Arteriograph) for measuring augmentation index, central blood pressure and aortic pulse wave velocity,” Journal of Hypertension, vol. 28, no. 10, pp. 2068–2075, 2010.
  34. S. S. Hickson, M. Butlin, J. Broad, A. P. Avolio, I. B. Wilkinson, and C. M. McEniery, “Validity and repeatability of the Vicorder apparatus: a comparison with the SphygmoCor device,” Hypertension Research, vol. 32, no. 12, pp. 1079–1085, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Salvi, G. Lio, C. Labat, E. Ricci, B. Pannier, and A. Benetos, “Validation of a new non-invasive portable tonometer for determining arterial pressure wave and pulse wave velocity: the PulsePen device,” Journal of Hypertension, vol. 22, no. 12, pp. 2285–2293, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Sugawara, K. Hayashi, T. Yokoi, and H. Tanaka, “Carotid-femoral pulse wave velocity: impact of different arterial path length measurements,” Artery Research, vol. 4, no. 1, pp. 27–31, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. T. Weber, M. Ammer, M. Rammer et al., “Noninvasive determination of carotid-femoral pulse wave velocity depends critically on assessment of travel distance: a comparison with invasive measurement,” Journal of Hypertension, vol. 27, no. 8, pp. 1624–1630, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. Matsui, K. Kario, J. Ishikawa, K. Eguchi, S. Hoshide, and K. Shimada, “Reproducibility of arterial stiffness indices (pulse wave velocity and augmentation index) simultaneously assessed by automated pulse wave analysis and their associated risk factors in essential hypertensive patients,” Hypertension Research, vol. 27, no. 11, pp. 851–857, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Munakata, N. Ito, T. Nunokawa, and K. Yoshinaga, “Utility of automated brachial ankle pulse wave velocity measurements in hypertensive patients,” American Journal of Hypertension, vol. 16, no. 8, pp. 653–657, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. A. B. Liu, P. C. Hsu, Z. L. Chenand, and H. T. Wu, “Measuring pulse wave velocity using ECG and photoplethysmography,” Journal of Medical Systems, vol. 35, no. 5, pp. 771–777, 2011.
  41. M. C. Wang, A. B. Wu, M. F. Cheng, J. Y. Chen, C. S. Ho, and W. C. Tsai, “Association of arterial stiffness indexes, determined from digital volume pulse measurement and cardiovascular risk factors in chronic kidney disease,” American Journal of Hypertension, vol. 24, no. 5, pp. 544–549, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. J. M. Padilla, E. J. Berjano, J. Saiz, R. Rodriguezand, and L. Facila, “Pulse wave velocity and digital volume pulse as indirect estimators of blood pressure: pilot study on healthy volunteers,” Cardiovascular Engineering, vol. 9, no. 3, pp. 104–112, 2009.
  43. S. R. Alty, N. Angarita-Jaimes, S. C. Millasseau, and P. J. Chowienczyk, “Predicting arterial stiffness from the digital volume pulse waveform,” IEEE Transactions on Biomedical Engineering, vol. 54, no. 12, pp. 2268–2275, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. N. A. Jatoi, A. Mahmud, K. Bennett, and J. Feely, “Assessment of arterial stiffness in hypertension: comparison of oscillometric (Arteriograph), piezoelectronic (Complior) and tonometric (SphygmoCor) techniques,” Journal of Hypertension, vol. 27, no. 11, pp. 2186–2191, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. J. Baulmann, U. Schillings, S. Rickert et al., “A new oscillometric method for assessment of arterial stiffness: comparison with tonometric and piezo-electronic methods,” Journal of Hypertension, vol. 26, no. 3, pp. 523–528, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. S. A. Hope, I. T. Meredith, and J. D. Cameron, “Arterial transfer functions and the reconstruction of central aortic waveforms: myths, controversies and misconceptions,” Journal of Hypertension, vol. 26, no. 1, pp. 4–7, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Wassertheurer, J. Kropf, T. Weber et al., “A new oscillometric method for pulse wave analysis: comparison with a common tonometric method,” Journal of Human Hypertension, vol. 24, no. 8, pp. 498–504, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. S. C. Millasseau, R. P. Kelly, J. M. Ritter, and P. J. Chowienczyk, “Determination of age-related increases in large artery stiffness by digital pulse contour analysis,” Clinical Science, vol. 103, no. 4, pp. 371–377, 2002. View at Scopus
  49. D. Kracht, R. Shroff, and S. Baig, “Validating a new oscillometric device for aortic pulse wave velocity measurements in children and adolescents,” American Journal of Hypertension, vol. 24, no. 12, pp. 1294–1299, 2011.
  50. C. Palombo, M. Kozakova, C. Morizzo, et al., “Circulating endothelial progenitor cells and large artery structure and function in young subjects with uncomplicated type 1 diabetes,” Cardiovascular Diabetology, vol. 10, article 88, 2011.
  51. P. Salvi, M. E. Safar, C. Labat, C. Borghi, P. Lacolley, and A. Benetos, “Heart disease and changes in pulse wave velocity and pulse pressure amplification in the elderly over 80 years: the PARTAGE Study,” Journal of Hypertension, vol. 28, no. 10, pp. 2127–2133, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. T. Weber, S. Wassertheurer, M. Rammer, et al., “Validation of a brachial cuff-based method for estimating central systolic blood pressure,” Hypertension, vol. 58, no. 5, pp. 825–832, 2011.
  53. B. Gaszner, Z. Lenkey, M. Illyes, et al., “Comparison of aortic and carotid arterial stiffness parameters in patients with verified coronary artery disease,” Clinical Cardiology, vol. 35, no. 1, pp. 26–31, 2012.
  54. H. Gavaller, R. Sepp, M. Csanady, T. Forsterand, and A. Nemes, “Hypertrophic cardiomyopathy is associated with abnormal echocardiographic aortic elastic properties and arteriograph-derived pulse-wave velocity,” Echocardiography, vol. 28, no. 8, pp. 848–852, 2011.
  55. M. R. Rezai, G. Goudot, C. Winters, J. D. Finn, F. C. Wuand, and J. K. Cruickshank, “Calibration mode influences central blood pressure differences between SphygmoCor and two newer devices, the Arteriograph and Omron HEM-9000,” Hypertension Research, vol. 34, no. 9, pp. 1046–1051, 2011.
  56. A. Nemes, R. Takacs, H. Gavaller, et al., “Correlations between aortic stiffness and parasympathetic autonomic function in healthy volunteers,” Canadian Journal of Physiology and Pharmacology, vol. 88, no. 12, pp. 1166–1171, 2010.
  57. A. Nemes, R. Takacs, and H. Gavaller, “Correlations between Arteriograph-derived pulse wave velocity and aortic elastic properties by echocardiography,” Clinical Physiology and Functional Imaging, vol. 31, no. 1, pp. 61–65, 2011.
  58. F. Seibert, C. Behrendt, S. Schmidt, M. van der Giet, W. Zidek, and T. H. Westhoff, “Differential effects of cyclosporine and tacrolimus on arterial function,” Transplant International, vol. 24, no. 7, pp. 708–715, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. R. E. Climie, M. G. Schultz, S. B. Nikolic, K. D. Ahuja, J. W. Felland, and J. E. Sharman, “Validity and reliability of central blood pressure estimated by upper arm oscillometric cuff pressure,” American Journal of Hypertension, vol. 25, no. 4, pp. 414–420, 2012. View at Publisher · View at Google Scholar
  60. A. Lowe, W. Harrison, E. El-Aklouk, P. Ruygrok, and A. M. Al-Jumaily, “Non-invasive model-based estimation of aortic pulse pressure using suprasystolic brachial pressure waveforms,” Journal of Biomechanics, vol. 42, no. 13, pp. 2111–2115, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. S. C. Millasseau, F. G. Guigui, R. P. Kelly et al., “Noninvasive assessment of the digital volume pulse: comparison with the peripheral pressure pulse,” Hypertension, vol. 36, no. 6, pp. 952–956, 2000. View at Scopus
  62. M. F. O'Rourke and A. P. X. J. Jiang, “Pulse wave analysis,” British Journal of Clinical Pharmacology, vol. 51, no. 6, pp. 507–522, 2001. View at Publisher · View at Google Scholar · View at Scopus
  63. W. W. Nicholsand and M. F. O'Rourke, “Ascending aortic pressure waves,” in McDonald's Blood Flow in Arteries Theoretical, Experimental and Clinical Principles, W. W. Nichols and M. F. O'Rourke, Eds., Edward Arnold, London, UK, 1998.
  64. M. Karamanoglu, M. F. O'Rourke, A. P. Avolio, and R. P. Kelly, “An analysis of the relationship between central aortic and peripheral upper limb pressure waves in man,” European Heart Journal, vol. 14, no. 2, pp. 160–167, 1993. View at Scopus
  65. C. H. Chen, E. Nevo, B. Fetics et al., “Estimation of Central aortic pressure waveform by mathematical transformation of radial tonometry pressure: validation of generalized transfer function,” Circulation, vol. 95, no. 7, pp. 1827–1836, 1997. View at Scopus
  66. K. Takazawa, M. F. O'Rourke, M. Fujita et al., “Estimation of ascending aortic pressure from radial arterial pressure using a generalised transfer function,” Zeitschrift fur Kardiologie, vol. 85, no. 3, pp. 137–139, 1996. View at Scopus
  67. B. Fetics, E. Nevo, C. H. Chen, and D. A. Kass, “Parametric model derivation of transfer function for noninvasive estimation of aortic pressure by radial tonometry,” IEEE Transactions on Biomedical Engineering, vol. 46, no. 6, pp. 698–706, 1999. View at Publisher · View at Google Scholar · View at Scopus
  68. S. J. Marchais, A. P. Guerin, B. M. Pannier, B. I. Levy, M. E. Safar, and G. M. London, “Wave reflections and cardiac hypertrophy in chronic uremia: influence of body size,” Hypertension, vol. 22, no. 6, pp. 876–883, 1993. View at Scopus
  69. J. J. Oliverand and D. J. Webb, “Noninvasive assessment of arterial stiffness and risk of atherosclerotic events,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 4, pp. 554–566, 2003.
  70. R. P. Kelly, S. C. Millasseau, J. M. Ritter, and P. J. Chowienczyk, “Vasoactive drugs influence aortic augmentation index independently of pulse-wave velocity in healthy men,” Hypertension, vol. 37, no. 6, pp. 1429–1433, 2001. View at Scopus
  71. I. B. Wilkinson, H. MacCallum, P. C. Hupperetz, C. J. van Thoor, J. R. Cockcroft, and D. J. Webb, “Changes in the derived central pressure waveform and pulse pressure in response to angiotensin II and noradrenaline in man,” Journal of Physiology, vol. 530, no. 3, pp. 541–550, 2001. View at Publisher · View at Google Scholar · View at Scopus
  72. H. Smulyan, S. J. Marchais, B. Pannier, A. P. Guerin, M. E. Safar, and G. M. London, “Influence of body height on pulsatile arterial hemodynamic data,” Journal of the American College of Cardiology, vol. 31, no. 5, pp. 1103–1109, 1998. View at Publisher · View at Google Scholar · View at Scopus
  73. I. B. Wilkinson, H. MacCallum, L. Flint, J. R. Cockcroft, D. E. Newby, and D. J. Webb, “The influence of heart rate on augmentation index and central arterial pressure in humans,” Journal of Physiology, vol. 525, no. 1, pp. 263–270, 2000. View at Scopus
  74. C. D. Gatzka, J. D. Cameron, A. M. Dart, et al., “Correction of carotid augmentation index for heart rate in elderly essential hypertensives. ANBP2 Investigators. Australian Comparative Outcome Trial of Angiotensin-Converting Enzyme Inhibitor- and Diuretic-Based Treatment of Hypertension in the Elderly,” American Journal of Hypertension, vol. 14, no. 6, part 1, pp. 573–577, 2001.
  75. G. M. London, J. Blacher, B. Pannier, A. P. Guérin, S. J. Marchais, and M. E. Safar, “Arterial wave reflections and survival in end-stage renal failure,” Hypertension, vol. 38, no. 3, pp. 434–438, 2001. View at Scopus
  76. S. Riggio, G. Mandraffino, M. A. Sardo et al., “Pulse wave velocity and augmentation index, but not intima-media thickness, are early indicators of vascular damage in hypercholesterolemic children,” European Journal of Clinical Investigation, vol. 40, no. 3, pp. 250–257, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. C. Russo, Z. Jin, Y. Takei et al., “Arterial wave reflection and subclinical left ventricular systolic dysfunction,” Journal of Hypertension, vol. 29, no. 3, pp. 574–582, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. J. Y. Chen, C. H. Chou, Y. L. Lee et al., “Association of central aortic pressures indexes with development of diabetes mellitus in essential hypertension,” American Journal of Hypertension, vol. 23, no. 10, pp. 1069–1073, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. T. Weber, M. F. O'Rourke, E. Lassnig et al., “Pulse waveform characteristics predict cardiovascular events and mortality in patients undergoing coronary angiography,” Journal of Hypertension, vol. 28, no. 4, pp. 797–805, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. K. L. Wang, H. M. Cheng, S. H. Sung et al., “Wave reflection and arterial stiffness in the prediction of 15-year all-cause and cardiovascular mortalities: a community-based study,” Hypertension, vol. 55, no. 3, pp. 799–805, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. T. G. Papaioannou, K. S. Stamatelopoulos, G. Georgiopoulos et al., “Arterial wave reflections during the menstrual cycle of healthy women: a reproducibility study,” Hypertension, vol. 54, no. 5, pp. 1021–1027, 2009. View at Publisher · View at Google Scholar · View at Scopus
  82. B. Paul, C. L. Hewitson, R. J. Woodman, and A. A. Mangoni, “Analysis of short-term reproducibility of arterial vasoreactivity by pulse-wave analysis after pharmacological challenge,” Clinical and Experimental Pharmacology and Physiology, vol. 36, no. 1, pp. 49–54, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. I. B. Wilkinson, S. A. Fuchs, I. M. Jansen et al., “Reproducibility of pulse wave velocity and augmentation index measured by pulse wave analysis,” Journal of Hypertension, vol. 16, no. 12, part 2, pp. 2079–2084, 1998. View at Publisher · View at Google Scholar · View at Scopus
  84. Y. L. Liang, H. Teede, D. Kotsopoulos et al., “Non-invasive measurements of arterial structure and function: repeatability, interrelationships and trial sample size,” Clinical Science, vol. 95, no. 6, pp. 669–679, 1998. View at Publisher · View at Google Scholar · View at Scopus
  85. A. Siebenhofer, C. R. W. Kemp, A. J. Sutton, and B. Williams, “The reproducibility of central aortic blood pressure measurements in healthy subjects using applanation tonometry and sphygmocardiography,” Journal of Human Hypertension, vol. 13, no. 9, pp. 625–629, 1999. View at Scopus
  86. J. Filipovsky, V. Svobodovaand, and L. Pecen, “Reproducibility of radial pulse wave analysis in healthy subjects,” Journal of Hypertension, vol. 18, no. 8, pp. 1033–1040, 2000.
  87. M. T. Savage, C. J. Ferro, S. J. Pinder, and C. R. V. Tomson, “Reproducibility of derived central arterial waveforms in patients with chronic renal failure,” Clinical Science, vol. 103, no. 1, pp. 59–65, 2002. View at Scopus
  88. T. G. Papaioannou, K. S. Stamatelopoulos, E. Gialafos et al., “Monitoring of arterial stiffness indices by applanation tonometry and pulse wave analysis: reproducibility at low blood pressures,” Journal of Clinical Monitoring and Computing, vol. 18, no. 2, pp. 137–144, 2004. View at Publisher · View at Google Scholar · View at Scopus
  89. T. Weber, J. Auer, M. F. O'Rourke et al., “Arterial stiffness, wave reflections, and the risk of coronary artery disease,” Circulation, vol. 109, no. 2, pp. 184–189, 2004. View at Publisher · View at Google Scholar · View at Scopus
  90. E. ter Avest, S. Holewijn, A. F. H. Stalenhoef, and J. De Graaf, “Variation in non-invasive measurements of vascular function in healthy volunteers during daytime,” Clinical Science, vol. 108, no. 5, pp. 425–431, 2005. View at Publisher · View at Google Scholar · View at Scopus
  91. T. G. Papaioannou, E. N. Karatzis, K. N. Karatzi et al., “Hour-to-hour and week-to-week variability and reproducibility of wave reflection indices derived by aortic pulse wave analysis: implications for studies with repeated measurements,” Journal of Hypertension, vol. 25, no. 8, pp. 1678–1686, 2007. View at Publisher · View at Google Scholar · View at Scopus
  92. M. Crilly, C. Coch, H. Clark, M. Bruceand, and D. Williams, “Repeatability of the measurement of augmentation index in the clinical assessment of arterial stiffness using radial applanation tonometry,” Scandinavian Journal of Clinical & Laboratory, vol. 67, no. 4, pp. 413–422, 2007.
  93. M. Crilly, C. Coch, M. Bruce, H. Clark, and D. Williams, “Indices of cardiovascular dunction derived from peripheral pulse wave analysis using radial applanation tonometry: a measurement repeatability study,” Vascular Medicine, vol. 12, no. 3, pp. 189–197, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. M. Frimodt-Møller, A. H. Nielsen, A. L. Kamper, and S. Strandgaard, “Reproducibility of pulse-wave analysis and pulse-wave velocity determination in chronic kidney disease,” Nephrology Dialysis Transplantation, vol. 23, no. 2, pp. 594–600, 2008. View at Publisher · View at Google Scholar · View at Scopus
  95. M. F. O'Rourke and R. P. Kelly, “Wave reflection in the systemic circulation and its implications in ventricular function,” Journal of Hypertension, vol. 11, no. 4, pp. 327–337, 1993. View at Scopus
  96. R. Ross, “Atherosclerosis—an inflammatory disease,” The New England Journal of Medicine, vol. 340, no. 2, pp. 115–126, 1999. View at Publisher · View at Google Scholar · View at Scopus
  97. Y. Gao, “The multiple actions of NO,” Pflugers Archiv European Journal of Physiology, vol. 459, no. 6, pp. 829–839, 2010. View at Publisher · View at Google Scholar · View at Scopus
  98. T. Michel and P. M. Vanhoutte, “Cellular signaling and NO production,” Pflugers Archiv European Journal of Physiology, vol. 459, no. 6, pp. 807–816, 2010. View at Publisher · View at Google Scholar · View at Scopus
  99. S. Moncadaand and E. A. Higgs, “Nitric oxide and the vascular endothelium,” Handbook of Experimental Pharmacology, vol. 176, part 1, pp. 213–254, 2006.
  100. C. Napoli, F. de Nigris, S. Williams-Ignarro, O. Pignalosa, V. Sica, and L. J. Ignarro, “Nitric oxide and atherosclerosis: an update,” Nitric Oxide, vol. 15, no. 4, pp. 265–279, 2006. View at Publisher · View at Google Scholar · View at Scopus
  101. A. Koller, D. Sun, and G. Kaley, “Role of shear stress and endothelial prostaglandins in flow- and viscosity-induced dilation of arterioles in vitro,” Circulation Research, vol. 72, no. 6, pp. 1276–1284, 1993. View at Scopus
  102. R. M. Bryan Jr., J. You, E. M. Golding, and S. P. Marrelli, “Endothelium-derived hyperpolarizing factor: a cousin to nitric oxide and prostacyclin,” Anesthesiology, vol. 102, no. 6, pp. 1261–1277, 2005. View at Publisher · View at Google Scholar · View at Scopus
  103. S. G. Taylor and A. H. Weston, “Endothelium-derived hyperpolarizing factor: a new endogenous inhibitor from the vascular endothelium,” Trends in Pharmacological Sciences, vol. 9, no. 8, pp. 272–274, 1988. View at Scopus
  104. R. Joannides, J. Bellienand, and C. Thuillez, “Clinical methods for the evaluation of endothelial function—a focus on resistance arteries,” Fundamental and Clinical Pharmacology, vol. 20, no. 3, pp. 311–320, 2006.
  105. J. Lekakis, P. Abraham, A. Balbarini, et al., “Methods for evaluating endothelial function: a position statement from the European Society of Cardiology Working Group on Peripheral Circulation,” European Journal of Cardiovascular Prevention and Rehabilitation, vol. 18, no. 6, pp. 775–789, 2011.
  106. D. S. Celermajer, K. E. Sorensen, V. M. Gooch et al., “Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis,” The Lancet, vol. 340, no. 8828, pp. 1111–1115, 1992. View at Publisher · View at Google Scholar · View at Scopus
  107. L. Stonerand and M. J. Sabatier, “Assessments of endothelial function using ultrasound,” in Ultrasound, P. Ainslie, Ed., InTech, Rijeka, Croatia, 2012.
  108. I. B. Wilkinson, A. Qasem, C. M. McEniery, D. J. Webb, A. P. Avolio, and J. R. Cockcroft, “Nitric oxide regulates local arterial distensibility in vivo,” Circulation, vol. 105, no. 2, pp. 213–217, 2002. View at Publisher · View at Google Scholar · View at Scopus
  109. J. L. Fleiss, The Design and Analysis of Clinical Experiments, John Wiley & Sons, New York, NY, USA, 1986.
  110. M. L. Stoner, M. Erickson, J. M. Young, M. Fryerand, and M. J. Sabatier, “There’s more to flow-mediated dilation than nitric oxide,” Journal of Atherosclerosis and Thrombosis. In press.
  111. P. G. McLean, D. Aston, D. Sarkar, and A. Ahluwalia, “Protease-activated receptor-2 activation causes EDHF-like coronary vasodilation: selective preservation in ischemia/reperfusion injury: involvement of lipoxygenase products, VR1 receptors, and C-fibers,” Circulation Research, vol. 90, no. 4, pp. 465–472, 2002. View at Publisher · View at Google Scholar · View at Scopus
  112. E. M. Golding, J. You, C. S. Robertson, and R. M. Bryan Jr., “Potentiated endothelium-derived hyperpolarizing factor-mediated dilations in cerebral arteries following mild head injury,” Journal of Neurotrauma, vol. 18, no. 7, pp. 691–697, 2001. View at Scopus
  113. M. Malmsjo, A. Bergdahl, X. H. Zhao, et al., “Enhanced acetylcholine and P2Y-receptor stimulated vascular EDHF-dilatation in congestive heart failure,” Cardiovascular Research, vol. 43, no. 1, pp. 200–209, 1999.
  114. R. P. Brandes, A. Behra, C. Lebherz et al., “N(G)-nitro-L-arginine- and indomethacin-resistant endothelium-dependent relaxation in the rabbit renal artery: effect of hypercholesterolemia,” Atherosclerosis, vol. 135, no. 1, pp. 49–55, 1997. View at Publisher · View at Google Scholar · View at Scopus
  115. C. Thollon, M. P. Fournet-Bourguignon, D. Saboureau et al., “Consequences of reduced production of NO on vascular reactivity of porcine coronary arteries after angioplasty: importance of EDHF,” British Journal of Pharmacology, vol. 136, no. 8, pp. 1153–1161, 2002. View at Publisher · View at Google Scholar · View at Scopus
  116. H. Miura, R. E. Wachtel, Y. Liu et al., “Flow-induced dilation of human coronary arterioles important role of Ca2+-activated K+ channels,” Circulation, vol. 103, no. 15, pp. 1992–1998, 2001. View at Scopus
  117. G. A. FitzGerald, B. Smith, A. K. Pedersen, and A. R. Brash, “Increased prostacyclin biosynthesis in patients with severe atherosclerosis and platelet activation,” The New England Journal of Medicine, vol. 310, no. 17, pp. 1065–1068, 1984. View at Scopus
  118. L. Mayahi, L. Mason, K. Bleasdale-Barr et al., “Endothelial, sympathetic, and cardiac function in inherited (6R)-L-Erythro-5,6,7,8-Tetrahydro-L-Biopterin deficiency,” Circulation, vol. 3, no. 6, pp. 513–522, 2010. View at Publisher · View at Google Scholar · View at Scopus
  119. B. Hornig, V. Maier, and H. Drexler, “Physical training improves endothelial function in patients with chronic heart failure,” Circulation, vol. 93, no. 2, pp. 210–214, 1996. View at Scopus
  120. L. Ghiadoni, D. Versari, A. Magagna et al., “Ramipril dose-dependently increases nitric oxide availability in the radial artery of essential hypertension patients,” Journal of Hypertension, vol. 25, no. 2, pp. 361–366, 2007. View at Publisher · View at Google Scholar · View at Scopus