About this Journal Submit a Manuscript Table of Contents
International Journal of Vascular Medicine
Volume 2012 (2012), Article ID 968761, 7 pages
http://dx.doi.org/10.1155/2012/968761
Clinical Study

Benfotiamine Counteracts Smoking-Induced Vascular Dysfunction in Healthy Smokers

1Diabetes Center, Heart and Diabetes Center NRW Bad Oeynhausen, Ruhr University of Bochum, Georgstrasse 11, 32545 Bad Oeynhausen, Germany
2Profil Institute for Metabolic Research, Hellersbergstrasse 9, 41460 Neuss, Germany
3Institute for Laboratory and Transfusion Medicine, Heart and Diabetes Center NRW, Bad Oeynhausen, Ruhr University of Bochum, Georgstrasse 11, 32545 Bad Oeynhausen, Germany
4Center for Diabetes, Nutrition and Metabolic Diseases, “Iuliu Hatieganu” University, Str. Clinicilor nr. 2, 400006 Cluj-Napoca, Romania

Received 13 February 2012; Revised 22 August 2012; Accepted 5 September 2012

Academic Editor: Tomoki Hashimoto

Copyright © 2012 Alin Stirban et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Ezzati, S. J. Henley, M. J. Thun, and A. D. Lopez, “Role of smoking in global and regional cardiovascular mortality,” Circulation, vol. 112, no. 4, pp. 489–497, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. O. T. Raitakari, M. R. Adams, R. J. McCredie, K. A. Griffiths, R. Stocker, and D. S. Celermajer, “Oral vitamin C and endothelial function in smokers: short-term improvement, but no sustained beneficial effect,” Journal of the American College of Cardiology, vol. 35, no. 6, pp. 1616–1621, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Neunteufl, U. Priglinger, S. Heher et al., “Effects of vitamin E on chronic and acute endothelial dysfunction in smokers,” Journal of the American College of Cardiology, vol. 35, no. 2, pp. 277–283, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Vlachopoulos, D. Tsekoura, N. Alexopoulos, D. Panagiotakos, K. Aznaouridis, and C. Stefanadis, “Type 5 phosphodiesterase inhibition by sildenafil abrogates acute smoking-induced endothelial dysfunction,” American Journal of Hypertension, vol. 17, no. 11, pp. 1040–1044, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. D. S. Celermajer, K. E. Sorensen, D. Georgakopoulos et al., “Cigarette smoking is associated with dose-related and potentially reversible impairment of endothelium-dependent dilation in healthy young adults,” Circulation, vol. 88, no. 5, pp. 2149–2155, 1993. View at Scopus
  6. T. Kato, T. Inoue, T. Morooka, N. Yoshimoto, and K. Node, “Short-term passive smoking causes endothelial dysfunction via oxidative stress in nonsmokers,” Canadian Journal of Physiology and Pharmacology, vol. 84, no. 5, pp. 523–529, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Van Der Vaart, D. S. Postma, W. Timens, and N. H. T. Ten Hacken, “Acute effects of cigarette smoke on inflammation and oxidative stress: a review,” Thorax, vol. 59, no. 8, pp. 713–721, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. D. M. Burns, “Cigarettes and cigarette smoking,” Clinics in Chest Medicine, vol. 12, no. 4, pp. 631–642, 1991. View at Scopus
  9. C. Cerami, H. Founds, I. Nicholl et al., “Tobacco smoke is a source of toxic reactive glycation products,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 25, pp. 13915–13920, 1997. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Guerci, A. Kearney-Schwartz, P. Böhme, F. Zannad, and P. Drouin, “Endothelial dysfunction and type 2 diabetes: part 1: physiology and methods for exploring the endothelial function,” Diabetes and Metabolism, vol. 27, no. 4, pp. 425–434, 2001. View at Scopus
  11. O. T. Raitakari, M. R. Adams, R. J. McCredie, K. A. Griffiths, and D. S. Celermajer, “Arterial endothelial dysfunction related to passive smoking is potentially reversible in healthy young adults,” Annals of Internal Medicine, vol. 130, no. 7, pp. 578–581, 1999. View at Scopus
  12. M. Law and J. L. Tang, “An analysis of the effectiveness of interventions intended to help people stop smoking,” Archives of Internal Medicine, vol. 155, no. 18, pp. 1933–1941, 1995. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Siasos, D. Tousoulis, C. Vlachopoulos et al., “Short-term treatment with L-arginine prevents the smoking-induced impairment of endothelial function and vascular elastic properties in young individuals,” International Journal of Cardiology, vol. 126, no. 3, pp. 394–399, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. H. A. Hadi, C. S. Carr, and J. Al Suwaidi, “Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome,” Vascular Health and Risk Management, vol. 1, no. 3, pp. 183–198, 2005. View at Scopus
  15. K. H. Schreeb, S. Freudenthaler, S. V. Vormfelde, U. Gundert-Remy, and C. H. Gleiter, “Comparative bioavailability of two vitamin B1 preparations: benfotiamine and thiamine mononitrate,” European Journal of Clinical Pharmacology, vol. 52, no. 4, pp. 319–320, 1997. View at Scopus
  16. H. P. Hammes, X. Du, D. Edelstein et al., “Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy,” Nature Medicine, vol. 9, no. 3, pp. 294–299, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. P. J. Thornalley, “The potential role of thiamine (vitamin B1) in diabetic complications,” Current Diabetes Reviews, vol. 1, no. 3, pp. 287–298, 2005. View at Scopus
  18. U. Schmid, H. Stopper, A. Heidland, and N. Schupp, “Benfotiamine exhibits direct antioxidative capacity and prevents induction of DNA damage in vitro,” Diabetes/Metabolism Research and Reviews, vol. 24, no. 5, pp. 371–377, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. V. Marchetti, R. Menghini, S. Rizza et al., “Benfotiamine counteracts glucose toxicity effects on endothelial progenitor cell differentiation via Akt/FoxO signaling,” Diabetes, vol. 55, no. 8, pp. 2231–2237, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Kruse, D. Navarro, P. Desjardins, and R. F. Butterworth, “Increased brain endothelial nitric oxide synthase expression in thiamine deficiency: relationship to selective vulnerability,” Neurochemistry International, vol. 45, no. 1, pp. 49–56, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. V. L. Raghavendra Rao, D. D. Mousseau, and R. F. Butterworth, “Nitric oxide synthase activities are selectively decreased in vulnerable brain regions in thiamine deficiency,” Neuroscience Letters, vol. 208, no. 1, pp. 17–20, 1996. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Shoeb and K. V. Ramana, “Anti-inflammatory effects of benfotiamine are mediated through the regulation of the arachidonic acid pathway in macrophages,” Free Radical Biology and Medicine, vol. 52, no. 1, pp. 182–190, 2012. View at Publisher · View at Google Scholar
  23. P. Balakumar, R. Sharma, and M. Singh, “Benfotiamine attenuates nicotine and uric acid-induced vascular endothelial dysfunction in the rat,” Pharmacological Research, vol. 58, no. 5-6, pp. 356–363, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Arora, A. Lidor, C. J. Abularrage et al., “Thiamine (vitamin B1) improves endothelium-dependent vasodilatation in the presence of hyperglycemia,” Annals of Vascular Surgery, vol. 20, no. 5, pp. 653–658, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Stirban, M. Negrean, B. Stratmann et al., “Benfotiamine prevents macro- and microvascular endothelial dysfunction and oxidative stress following a meal rich in advanced glycation end products in individuals with type 2 diabetes,” Diabetes Care, vol. 29, no. 9, pp. 2064–2071, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. D. S. Celermajer, K. E. Sorensen, V. M. Gooch et al., “Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis,” The Lancet, vol. 340, no. 8828, pp. 1111–1115, 1992. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Guthikonda, C. A. Sinkey, and W. G. Haynes, “What is the most appropriate methodology for detection of conduit artery endothelial dysfunction?” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 5, pp. 1172–1176, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. M. C. Corretti, T. J. Anderson, E. J. Benjamin et al., “Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the international brachial artery reactivity task force,” Journal of the American College of Cardiology, vol. 39, no. 2, pp. 257–265, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Hashimoto, M. Akishita, M. Eto et al., “Modulation of endothelium-dependent flow-mediated dilatation of the brachial artery by sex and menstrual cycle,” Circulation, vol. 92, no. 12, pp. 3431–3435, 1995. View at Scopus
  30. A. S. Postadzhiyan, A. V. Tzontcheva, I. Kehayov, and B. Finkov, “Circulating soluble adhesion molecules ICAM-1 and VCAM-1 and their association with clinical outcome, troponin T and C-reactive protein in patients with acute coronary syndromes,” Clinical Biochemistry, vol. 41, no. 3, pp. 126–133, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. R. A. Kowluru, “Diabetes-induced elevations in retinal oxidative stress, protein kinase C and nitric oxide are interrelated,” Acta Diabetologica, vol. 38, no. 4, pp. 179–185, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Y. Rhee, S. H. Na, Y. K. Kim, M. M. Lee, and H. Y. Kim, “Acute effects of cigarette smoking on arterial stiffness and blood pressure in male smokers with hypertension,” American Journal of Hypertension, vol. 20, no. 6, pp. 637–641, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. B. Balint, L. E. Donnelly, T. Hanazawa, S. A. Kharitonov, and P. J. Barnes, “Increased nitric oxide metabolites in exhaled breath condensate after exposure to tobacco smoke,” Thorax, vol. 56, no. 6, pp. 456–461, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. E. Berrone, E. Beltramo, C. Solimine, A. U. Ape, and M. Porta, “Regulation of intracellular glucose and polyol pathway by thiamine and benfotiamine in vascular cells cultured in high glucose,” Journal of Biological Chemistry, vol. 281, no. 14, pp. 9307–9313, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. F. Pomero, A. Molinar Min, M. La Selva, A. Allione, G. M. Molinatti, and M. Porta, “Benfotiamine is similar to thiamine in correcting endothelial cell defects induced by high glucose,” Acta Diabetologica, vol. 38, no. 3, pp. 135–138, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. R. Avena, S. Arora, B. J. Carmody, K. Cosby, and A. N. Sidawy, “Thiamine (vitamin B1) protects against glucose- and insulin-mediated proliferation of human infragenicular arterial smooth muscle cells,” Annals of Vascular Surgery, vol. 14, no. 1, pp. 37–43, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Stirban, M. Negrean, B. Stratmann et al., “Adiponectin decreases postprandially following a heat-processed meal in individuals with type 2 diabetes: an effect prevented by benfotiamine and cooking method,” Diabetes Care, vol. 30, no. 10, pp. 2514–2516, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. Kohda, H. Shirakawa, K. Yamane et al., “Prevention of incipient diabetic cardiomyopathy by high-dose thiamine,” Journal of Toxicological Sciences, vol. 33, no. 4, pp. 459–472, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. I. Shimon, S. Almog, Z. Vered et al., “Improved left ventricular function after thiamine supplementation in patients with congestive heart failure receiving long-term furosemide therapy,” American Journal of Medicine, vol. 98, no. 5, pp. 485–490, 1995. View at Publisher · View at Google Scholar · View at Scopus
  40. P. J. Thornalley, R. Babaei-Jadidi, H. Al Ali et al., “High prevalence of low plasma thiamine concentration in diabetes linked to a marker of vascular disease,” Diabetologia, vol. 50, no. 10, pp. 2164–2170, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. A. R. Dyer, P. Elliott, J. Stamler, Q. Chan, H. Ueshima, and B. F. Zhou, “Dietary intake in male and female smokers, ex-smokers, and never smokers: the INTERMAP Study,” Journal of Human Hypertension, vol. 17, no. 9, pp. 641–654, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. T. Motoyama, H. Kawano, K. Kugiyama et al., “Endothelium-dependent vasodilation in the brachial artery is impaired in smokers: effect of vitamin C,” American Journal of Physiology, vol. 273, no. 4, pp. H1644–H1650, 1997. View at Scopus
  43. N. Bonello and R. J. Norman, “Soluble adhesion molecules in serum throughout the menstrual cycle,” Human Reproduction, vol. 17, no. 9, pp. 2272–2278, 2002. View at Scopus
  44. C. Papamichael, E. Karatzis, K. Karatzi et al., “Red wine's antioxidants counteract acute endothelial dysfunction caused by cigarette smoking in healthy nonsmokers,” American Heart Journal, vol. 147, no. 2, p. E5, 2004. View at Scopus