About this Journal Submit a Manuscript Table of Contents
Interdisciplinary Perspectives on Infectious Diseases
Volume 2011 (2011), Article ID 462767, 10 pages
http://dx.doi.org/10.1155/2011/462767
Research Article

Changes Related to Age in Natural and Acquired Systemic Self-IgG Responses in Malaria

1Laboratoire d'Immunologie EA 2686, IMPRT-IFR 114, Faculté de Médecine Pôle Recherche, Université Lille 2, 1 Place de Verdun, 59045 Lille Cedex, France
2Laboratoire d'Immunologie et Hématologie du CHU-Cocody, Abidjan, Cote D'Ivoire
3Laboratoire de Parasitologie et de Mycologie, Institute de Biologie et Pathologie, CHRU de Lille 59037 Lille, France
4Service de Neurologie D, Hôpital Roger Salengro, 59037 Lille Cedex, France

Received 6 July 2011; Accepted 23 September 2011

Academic Editor: Jose G. Estrada-Franco

Copyright © 2011 Romuald Dassé et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. G. Breman, A. Egan, and G. T. Keusch, “Introduction and summary: the intolerable burden of malaria: a new look at the numbers,” American Journal of Tropical Medicine and Hygiene, vol. 64, supplement 1-2, pp. iv–vii, 2001. View at Scopus
  2. J. L. Pérignon and P. Druilhe, “Immune mechanisms underlying the premunition against Plasmodium falciparum malaria,” Memorias do Instituto Oswaldo Cruz, vol. 89, supplement 2, pp. 51–53, 1994. View at Scopus
  3. D. Mazier, J. Nitcheu, and M. Idrissa-Boubou, “Cerebral malaria and immunogenetics,” Parasite Immunology, vol. 22, no. 12, pp. 613–623, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. M. M. T. Shigidi, R. A. Hashim, M. N. A. Idris, M. M. Mukhtar, and T. E. O. Sokrab, “Parasite diversity in adult patients with cerebral malaria: a hospital-based, case-control study,” American Journal of Tropical Medicine and Hygiene, vol. 71, no. 6, pp. 754–757, 2004. View at Scopus
  5. S. S. Yazdani, P. Mukherjee, V. S. Chauhan, and C. E. Chitnis, “Immune responses to asexual blood-stages of malaria parasites,” Current Molecular Medicine, vol. 6, no. 2, pp. 187–203, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Bouharoun-Tayoun, P. Attanath, A. Sabchareon, T. Chongsuphajaisiddhi, and P. Druilhe, “Antibodies that protect humans against Plasmodium falciparum blood stages do not on their own inhibit parasite growth and invasion in vitro, but act in cooperation with monocytes,” Journal of Experimental Medicine, vol. 172, no. 6, pp. 1633–1641, 1990. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Cohen, I. A. McGregor, and S. Carrington, “Gamma-globulin and acquired immunity to human malaria,” Nature, vol. 192, no. 4804, pp. 733–737, 1961. View at Publisher · View at Google Scholar · View at Scopus
  8. G. M. Zanini, L. J. de Moura Carvalho, K. Brahimi et al., “Sera of patients with systemic lupus erythematosus react with plasmodial antigens and can inhibit the in vitro growth of Plasmodium falciparum,” Autoimmunity, vol. 42, no. 6, pp. 545–552, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. C. T. Daniel-Ribeiro and G. Zanini, “Autoimmunity and malaria: what are they doing together?” Acta Tropica, vol. 76, no. 3, pp. 205–221, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Stahl, S. Lacroix-Desmazes, L. Mouthon, S. V. Kaveri, and M. D. Kazatchkine, “Analysis of human self-reactive antibody repertoires by quantitative immunoblotting,” Journal of Immunological Methods, vol. 240, no. 1-2, pp. 1–14, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Mouthon, M. Haury, S. Lacroix-Desmazes, C. Barreau, A. Coutinho, and M. D. Kazatchkine, “Analysis of the normal human IgG antibody repertoire: evidence that IgG autoantibodies of healthy adults recognize a limited and conserved set of protein antigens in homologous tissues,” Journal of Immunology, vol. 154, no. 11, pp. 5769–5778, 1995. View at Scopus
  12. D. Lefranc, L. Almeras, S. Dubucquoi, J. de Seze, P. Vermersch, and L. Prin, “Distortion of the Self-Reactive IgG Antibody Repertoire in Multiple Sclerosis as a New Diagnostic Tool,” Journal of Immunology, vol. 172, no. 1, pp. 669–678, 2004. View at Scopus
  13. D. Lefranc, D. Launay, S. Dubucquoi et al., “Characterization of discriminant human brain antigenic targets in neuropsychiatric systemic lupus erythematosus using an immunoproteomic approach,” Arthritis and Rheumatism, vol. 56, no. 10, pp. 3420–3432, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Zephir, L. Almeras, M. El Behi et al., “Diversified serum IgG response involving non-myelin CNS proteins during experimental autoimmune encephalomyelitis,” Journal of Neuroimmunology, vol. 179, no. 1-2, pp. 53–64, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. M. El Behi, H. Zéphir, D. Lefranc et al., “Changes in self-reactive IgG antibody repertoire after treatment of experimental autoimmune encephalomyelitis with anti-allergic drugs,” Journal of Neuroimmunology, vol. 182, no. 1-2, pp. 80–88, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Almeras, D. Lefranc, H. Drobecq et al., “New antigenic candidates in multiple sclerosis: identification by serological proteome analysis,” Proteomics, vol. 4, no. 7, pp. 2184–2194, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. J. F. Bach, “The effect of infections on susceptibility to autoimmune and allergic diseases,” New England Journal of Medicine, vol. 347, no. 12, pp. 911–920, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Sotgiu, A. Angius, A. Embry, G. Rosati, and S. Musumeci, “Hygiene hypothesis: innate immunity, malaria and multiple sclerosis,” Medical Hypotheses, vol. 70, no. 4, pp. 819–825, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. P. G. Sorensen, H. Mickley, and K. G. Schmidt, “Malaria-induced immune thrombocytopenia,” Vox Sanguinis, vol. 47, no. 1, pp. 68–72, 1984. View at Scopus
  20. J. J. Archelos, M. K. Storch, and H. P. Hartung, “The role of B cells and auto antibodies in multiple sclerosis,” Annals of Neurology, vol. 48, no. 6, p. 948, 2000.
  21. M. Diamant, M. E. Tushuizen, A. Sturk, and R. Nieuwland, “Cellular microparticles: new players in the field of vascular disease?” European Journal of Clinical Investigation, vol. 34, no. 6, pp. 392–401, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Pugliatti, S. Sotgiu, and G. Rosati, “The worldwide prevalence of multiple sclerosis,” Clinical Neurology and Neurosurgery, vol. 104, no. 3, pp. 182–191, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. C. M. Poser, D. W. Paty, L. Scheinberg, et al., “New diagnostic criteria for multiple sclerosis: guidelines for research protocols,” Annals of Neurology, vol. 13, no. 3, pp. 227–231, 1983.
  24. World Health Organization, “Malaria Fact Sheet,” World Health Organization Fact Sheet no. 94, 1998.
  25. I. M. Medana, G. Chaudhri, T. Chan-Ling, and N. H. Hunt, “Central nervous system in cerebral malaria: “Innocent bystander” or active participant in the induction of immunopathology?” Immunology and Cell Biology, vol. 79, no. 2, pp. 101–120, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. D. S. Rowe, I. A. McGregor, S. J. Smith, P. Hall, and K. Williams, “Plasma immunoglobulin concentrations in a West African (Gambian) community and in a group of healthy British adults,” Clinical and Experimental Immunology, vol. 3, no. 1, pp. 63–79, 1968. View at Scopus
  27. M. W. Turner and A. Voller, “Studies on immunoglobulins of Nigerians. I. The immunoglobulin levels of a Nigerian population,” Journal of Tropical Medicine and Hygiene, vol. 69, no. 5, pp. 99–103, 1966. View at Scopus
  28. C. C. Curtain, C. Kidson, D. L. Champness, and J. G. Gorman, “Malaria antibody content of gamma2–7S globulin in tropical populations,” Nature, vol. 203, no. 4952, pp. 1366–1367, 1964. View at Publisher · View at Google Scholar · View at Scopus
  29. D. Donati, B. Mok, A. Chêne et al., “Increased B cell survival and preferential activation of the memory compartment by a malaria polyclonal B cell activator,” Journal of Immunology, vol. 177, no. 5, pp. 3035–3044, 2006. View at Scopus
  30. B. M. Greenwood, “Possible role of a B cell mitogen in hypergammaglobulinaemia in malaria and trypanosomiasis,” Lancet, vol. 1, no. 7855, pp. 435–436, 1974. View at Scopus
  31. L. H. Miller, D. I. Baruch, K. Marsh, and O. K. Doumbo, “The pathogenic basis of malaria,” Nature, vol. 415, no. 6872, pp. 673–679, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. H. C. van der Heyde, J. Nolan, V. Combes, I. Gramaglia, and G. E. Grau, “A unified hypothesis for the genesis of cerebral malaria: sequestration, inflammation and hemostasis leading to microcirculatory dysfunction,” Trends in Parasitology, vol. 22, no. 11, pp. 503–508, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. L. Francis and A. Perl, “Infection in systemic lupus erythematosus: friend or foe?” International Journal of Clinical Rheumatology, vol. 5, no. 1, pp. 59–74, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. L. Doeuvre, L. Plawinski, F. Toti, and E. Anglés-Cano, “Cell-derived microparticles: a new challenge in neuroscience,” Journal of Neurochemistry, vol. 110, no. 2, pp. 457–468, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. G. van der Wal, W. I. M. Verhagen, and A. S. M. Dofferhoff, “Neurological complications following Plasmodium falciparum infection,” Netherlands Journal of Medicine, vol. 63, no. 5, pp. 180–183, 2005. View at Scopus
  36. V. Combes, N. Coltel, M. Alibert et al., “ABCA1 gene deletion protects against cerebral malaria: potential pathogenic role of microparticles in neuropathology,” American Journal of Pathology, vol. 166, no. 1, pp. 295–302, 2005. View at Scopus
  37. V. Fernandez, C. J. Treutiger, G. B. Nash, and M. Wahlgren, “Multiple adhesive phenotypes linked to rosetting binding of erythrocytes in Plasmodium falciparum malaria,” Infection and Immunity, vol. 66, no. 6, pp. 2969–2975, 1998. View at Scopus
  38. V. Guiyedi, Y. Chanseaud, C. Fesel et al., “Self-reactivities to the non-erythroid alpha spectrin correlate with cerebral malaria in gabonese children,” PLoS ONE, vol. 2, no. 4, article e389, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. I. R. Cohen and L. C. Norins, “Natural human antibodies to gram-negative bacteria: immunoglobulins G, A, and M,” Science, vol. 152, no. 3726, pp. 1257–1259, 1966. View at Scopus
  40. A. Coutinho, M. D. Kazatchkine, and S. Avrameas, “Natural autoantibodies,” Current Opinion in Immunology, vol. 7, no. 6, pp. 812–818, 1995. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. Merbl, M. Zucker-Toledano, F. J. Quintana, and I. R. Cohen, “Newborn humans manifest autoantibodies to defined self molecules detected by antigen microarray informatics,” Journal of Clinical Investigation, vol. 117, no. 3, pp. 712–718, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. F. Capolunghi, S. Cascioli, E. Giorda et al., “CpG drives human transitional B cells to terminal differentiation and production of natural antibodies,” Journal of Immunology, vol. 180, no. 2, pp. 800–808, 2008. View at Scopus
  43. C. C. John, P. Bangirana, J. Byarugaba et al., “Cerebral malaria in children is associated with long-term cognitive impairment,” Pediatrics, vol. 122, no. 1, pp. e92–e99, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. E. A. Okiro, A. Al-Taiar, H. Reyburn, R. Idro, J. A. Berkley, and R. W. Snow, “Age patterns of severe paediatric malaria and their relationship to Plasmodium falciparum transmission intensity,” Malaria Journal, vol. 8, no. 1, article 4, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Poletaev and L. Osipenko, “General network of natural autoantibodies as immunological homunculus (Immunculus),” Autoimmunity Reviews, vol. 2, no. 5, pp. 264–271, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Kay, “Immunoregulation of cellular life span,” Annals of the New York Academy of Sciences, vol. 1057, pp. 85–111, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. A. E. Warrington and M. Rodriguez, “Method of identifying natural antibodies for remyelination,” Journal of Clinical Immunology, vol. 30, supplement 1, pp. 50–55, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. K. N. Jhaveri, K. Ghosh, D. Mohanty et al., “Autoantibodies, immunoglobulins, complement and circulating immune complexes in acute malaria,” National Medical Journal of India, vol. 10, no. 1, pp. 5–7, 1997. View at Scopus
  49. J. M. Anaya, P. A. Correa, R. D. Mantilla, F. Jimenez, T. Kuffner, and J. M. McNicholl, “Rheumatoid arthritis in African Colombians from Quibdo,” Seminars in Arthritis and Rheumatism, vol. 31, no. 3, pp. 191–198, 2001. View at Publisher · View at Google Scholar · View at Scopus
  50. P. Oppezzo and G. Dighiero, “Autoantibodies, tolerance and autoimmunity,” Pathologie Biologie, vol. 51, no. 5, pp. 297–304, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Moynier, M. Abderrazik, M. Rucheton, B. Combe, J. Sany, and J. Brochier, “The B cell repertoire in rheumatoid arthritis. I. Frequency of EBV-inducible circulating precursors producing autoantibodies,” Journal of Autoimmunity, vol. 4, no. 4, pp. 631–649, 1991. View at Publisher · View at Google Scholar
  52. K. N. Mendis and R. Carter, “Clinical disease and pathogenesis in malaria,” Parasitology Today, vol. 11, no. 5, pp. 1–15, 1995. View at Scopus
  53. O. H. Branch, S. Takala, S. Kariuki et al., “Plasmodium falciparum genotypes, low complexity of infection, and resistance to subsequent malaria in participants in the Asembo Bay Cohort Project,” Infection and Immunity, vol. 69, no. 12, pp. 7783–7792, 2001. View at Publisher · View at Google Scholar · View at Scopus
  54. K. K. W. Wang, “Calpain and caspase: can you tell the difference?” Trends in Neurosciences, vol. 23, no. 1, pp. 20–26, 2000. View at Publisher · View at Google Scholar · View at Scopus
  55. T. Smith, I. Felger, M. Tanner, and H. P. Beck, “Premunition in Plasmodium falciparum infection: insights from the epidemiology of multiple infections,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 93, no. 1, pp. 59–64, 1999. View at Publisher · View at Google Scholar · View at Scopus
  56. Soe-Soe, Khin-Saw-Aye, Htay-Aung et al., “Premunition against Plasmodium falciparum in a malaria hyperendemic village in Myanmar,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 95, no. 1, pp. 81–84, 2001. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Ofosu-Okyere, M. J. Mackinnon, M. P. K. Sowa et al., “Novel Plasmodium falciparum clones and rising clone multiplicities are associated with the increase in malaria morbidity in Ghanaian children during the transition into the high transmission season,” Parasitology, vol. 123, no. 2, pp. 113–123, 2001. View at Publisher · View at Google Scholar · View at Scopus
  58. S. G. Yasawardene, G. P. Lomonossoff, and R. Ramasamy, “Expression & immunogenicity of malaria merozoite peptides displayed on the small coat protein of chimaeric cowpea mosaic virus,” Indian Journal of Medical Research, vol. 118, pp. 115–124, 2003. View at Scopus
  59. K. A. Henderson, V. A. Streltsov, A. M. Coley et al., “Structure of an IgNAR-AMA1 complex: targeting a conserved hydrophobic cleft broadens malarial strain recognition,” Structure, vol. 15, no. 11, pp. 1452–1466, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. F. J. Quintana, P. H. Hagedorn, G. Elizur, Y. Merbl, E. Domany, and I. R. Cohen, “Functional immunomics: microarray analysis of IgG autoantibody repertoires predicts the future response of mice to indunced diabetes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, supplement 2, pp. 14615–14621, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. D. Bansal, F. Herbert, P. Lim et al., “IgG autoantibody to brain beta tubulin III associated with cytokine cluster-II discriminate cerebral malaria in central India,” PLoS ONE, vol. 4, no. 12, article e8245, 2009. View at Publisher · View at Google Scholar
  62. G. L. Birbeck and T. E. Taylor, “Severe malaria: still counting the costs,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 76, no. 4, pp. 467–468, 2005. View at Publisher · View at Google Scholar · View at Scopus
  63. A. H. Muntendam, S. Jaffar, N. Bleichrodt, and M. B. van Hensbroek, “Absence of neuropsychological sequelae following cerebral malaria in Gambian children,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 90, no. 4, pp. 391–394, 1996. View at Publisher · View at Google Scholar · View at Scopus
  64. R. Idro, A. Kakooza-Mwesige, S. Balyejjussa et al., “Severe neurological sequelae and behaviour problems after cerebral malaria in Ugandan children,” BMC Research Notes, vol. 3, article 104, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. J. A. Carter, J. A. Lees, J. K. Gona et al., “Severe falciparum malaria and acquired childhood language disorder,” Developmental Medicine and Child Neurology, vol. 48, no. 1, pp. 51–57, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. J. A. Carter, A. J. Ross, B. G. R. Neville et al., “Developmental impairments following severe falciparum malaria in children,” Tropical Medicine and International Health, vol. 10, no. 1, pp. 3–10, 2005. View at Publisher · View at Google Scholar