About this Journal Submit a Manuscript Table of Contents
Interdisciplinary Perspectives on Infectious Diseases
Volume 2012 (2012), Article ID 843509, 10 pages
http://dx.doi.org/10.1155/2012/843509
Research Article

Pyoverdine, the Major Siderophore in Pseudomonas aeruginosa, Evades NGAL Recognition

1School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
2Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics and Emory+Children’s Center for Cystic Fibrosis Research, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA

Received 27 May 2012; Accepted 26 July 2012

Academic Editor: Adalberto R. Santos

Copyright © 2012 Mary E. Peek et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Visca, F. Imperi, and I. L. Lamont, “Pyoverdine siderophores: from biogenesis to biosignificance,” Trends in Microbiology, vol. 15, no. 1, pp. 22–30, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Cigana, L. Curcuru, M. R. Leone et al., “Pseudomonas aeruginosa exploits lipid a and muropeptides modification as a strategy to lower innate immunity during cystic fibrosis lung infection,” PLoS ONE, vol. 4, no. 12, Article ID e8439, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. K. D. Smith, “Iron metabolism at the host pathogen interface: lipocalin 2 and the pathogen-associated iroA gene cluster,” International Journal of Biochemistry and Cell Biology, vol. 39, no. 10, pp. 1776–1780, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. I. L. Lamont, A. F. Konings, and D. W. Reid, “Iron acquisition by Pseudomonas aeruginosa in the lungs of patients with cystic fibrosis,” BioMetals, vol. 22, no. 1, pp. 53–60, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Saiga, J. Nishimura, H. Kuwata et al., “Lipocalin 2-dependent inhibition of mycobacterial growth in alveolar epithelium,” Journal of Immunology, vol. 181, no. 12, pp. 8521–8527, 2008. View at Scopus
  6. T. H. Flo, K. D. Smith, S. Sato et al., “Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron,” Nature, vol. 432, no. 7019, pp. 917–921, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. R. Chan, J. S. Liu, D. A. Pociask et al., “Lipocalin 2 is required for pulmonary host defense against Klebsiella infection,” Journal of Immunology, vol. 182, no. 8, pp. 4947–4956, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Berger, A. Togawa, G. S. Duncan et al., “Lipocalin 2-deficient mice exhibit increased sensitivity to Escherichia coli infection but not to ischemia-reperfusion injury,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 6, pp. 1834–1839, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. K. M. Schmidt-Ott, K. Mori, Y. L. Jau et al., “Dual action of neutrophil gelatinase-associated lipocalin,” Journal of the American Society of Nephrology, vol. 18, no. 2, pp. 407–413, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. I. Eichler, M. Nilsson, R. Rath, I. Enander, P. Venge, and D. Y. Koller, “Human neutrophil lipocalin, a highly specific marker for acute exacerbation in cystic fibrosis,” European Respiratory Journal, vol. 14, no. 5, pp. 1145–1149, 1999. View at Scopus
  11. S. I. Müller, M. Valdebenito, and K. Hantke, “Salmochelin, the long-overlooked catecholate siderophore of Salmonella,” BioMetals, vol. 22, no. 4, pp. 691–695, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. M. A. Fischbach, H. Lin, D. R. Liu, and C. T. Walsh, “How pathogenic bacteria evade mammalian sabotage in the battle for iron,” Nature Chemical Biology, vol. 2, no. 3, pp. 132–138, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. M. A. Fischbach, H. Lin, L. Zhou et al., “The pathogen-associated iroA gene cluster mediates bacterial evasion of lipocalin 2,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 44, pp. 16502–16507, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Lin, M. A. Fischbach, D. R. Liu, and C. T. Walsh, “In vitro characterization of salmochelin and enterobactin trilactone hydrolases IroD, IroE, and Fes,” Journal of the American Chemical Society, vol. 127, no. 31, pp. 11075–11084, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. R. J. Abergel, M. K. Wilson, J. E. L. Arceneaux et al., “Anthrax pathogen evades the mammalian immune system through stealth siderophore production,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 49, pp. 18499–18503, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. M. A. Bachman, J. E. Oyler, S. H. Burns et al., “Klebsiella pneumoniae yersiniabactin promotes respiratory tract infection through evasion of lipocalin 2,” Infection and Immunity, vol. 79, no. 8, pp. 3309–3316, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. N. Li, C. Zhang, B. Li et al., “Unique iron coordination in iron-chelating molecule vibriobactin helps Vibrio cholerae evade mammalian siderocalin-mediated immune response,” The Journal of Biological Chemistry, vol. 287, no. 12, pp. 8912–8919, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. D. H. Goetz, M. A. Holmes, N. Borregaard, M. E. Bluhm, K. N. Raymond, and R. K. Strong, “The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition,” Molecular Cell, vol. 10, no. 5, pp. 1033–1043, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. D. H. Goetz, S. T. Willie, R. S. Armen, T. Bratt, N. Borregaard, and R. K. Strong, “Ligand preference inferred from the structure of neutrophil gelatinase associated lipocalin,” Biochemistry, vol. 39, no. 8, pp. 1935–1941, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. H. M. Berman, J. Westbrook, Z. Feng et al., “The protein data bank,” Nucleic Acids Research, vol. 28, no. 1, pp. 235–242, 2000. View at Scopus
  21. K. Mori, H. T. Lee, D. Rapoport et al., “Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury,” The Journal of Clinical Investigation, vol. 115, no. 3, pp. 610–621, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. L. Cai, J. Rubin, W. Han, P. Venge, and S. Xu, “The origin of multiple molecular forms in urine of HNL/NGAL,” Clinical Journal of the American Society of Nephrology, vol. 5, no. 12, pp. 2229–2235, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Hu, W. Hittelman, T. Lu et al., “NGAL decreases E-cadherin-mediated cellcell adhesion and increases cell motility and invasion through Rac1 in colon carcinoma cells,” Laboratory Investigation, vol. 89, no. 5, pp. 531–548, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. O. Trott and A. J. Olson, “Software news and update AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading,” Journal of Computational Chemistry, vol. 31, no. 2, pp. 455–461, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. Chimera is developed by the Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco, with support from the National Institutes of Health (National Center for Research Resources grant 2P41RR001081, National Institute of General Medical Sciences grant 9P41GM103311).
  26. E. F. Pettersen, T. D. Goddard, C. C. Huang et al., “UCSF Chimera—a visualization system for exploratory research and analysis,” Journal of Computational Chemistry, vol. 25, no. 13, pp. 1605–1612, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. M. F. Sanner, “Python: a programming language for software integration and development,” Journal of Molecular Graphics and Modelling, vol. 17, no. 1, pp. 57–61, 1999. View at Scopus
  28. M. A. Holmes, W. Paulsene, X. Jide, C. Ratledge, and R. K. Strong, “Siderocalin (Lcn 2) also binds carboxymycobactins, potentially defending against mycobacterial infections through iron sequestration,” Structure, vol. 13, no. 1, pp. 29–41, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. R. N. Jones, “Microbial etiologies of Hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia,” Clinical Infectious Diseases, vol. 51, supplement 1, pp. S81–S87, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. J. B. Goldberg, “Why is Pseudomonas aeruginosa a pathogen?” F1000 Biology Reports, vol. 2, no. 1, article 29, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. A. B. H. Khalifa, D. Moissenet, H. V. Thien, and M. Khedher, “Virulence factors in Pseudomonas aeruginosa: mechanisms and modes of regulation,” Annales de Biologie Clinique, vol. 69, no. 4, pp. 393–403, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Poole and G. A. McKay, “Iron acquisition and its control in Pseudomonas aeruginosa: many roads lead to Rome,” Frontiers in Bioscience, vol. 8, pp. d661–d686, 2003. View at Scopus
  33. M. A. Fischbach, H. Lin, D. R. Liu, and C. T. Walsh, “In vitro characterization of IroB, a pathogen-associated C-glycosyltransferase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 3, pp. 571–576, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Xu and P. Venge, “Lipocalins as biochemical markers of disease,” Biochimica et Biophysica Acta, vol. 1482, no. 1-2, pp. 298–307, 2000. View at Publisher · View at Google Scholar · View at Scopus
  35. D. R. Flower, “The lipocalin protein family: a role in cell regulation,” FEBS Letters, vol. 354, no. 1, pp. 7–11, 1994. View at Publisher · View at Google Scholar · View at Scopus
  36. T. M. Hoette, M. C. Clifton, A. M. Zawadzka, M. A. Holmes, R. K. Strong, and K. N. Raymond, “Immune interference in Mycobacterium tuberculosis intracellular iron acquisition through siderocalin recognition of carboxymycobactins,” ACS Chemical Biology, vol. 6, no. 12, pp. 1327–1331, 2011. View at Scopus
  37. R. J. Abergel, M. C. Clifton, J. C. Pizarro et al., “The siderocalin/enterobactin interaction: a link between mammalian immunity and bacterial iron transport,” Journal of the American Chemical Society, vol. 130, no. 34, pp. 11524–11534, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. D. A. Dartt, “Tear lipocalin: structure and function,” Ocular Surface, vol. 9, no. 3, pp. 126–138, 2011. View at Scopus
  39. M. Fluckinger, H. Haas, P. Merschak, B. J. Glasgow, and B. Redl, “Human tear lipocalin exhibits antimicrobial activity by scavenging microbial siderophores,” Antimicrobial Agents and Chemotherapy, vol. 48, no. 9, pp. 3367–3372, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. C. Correnti, M. C. Clifton, R. J. Abergel et al., “Galline Ex-FABP is an antibacterial siderocalin and a lysophosphatidic acid sensor functioning through dual ligand specificities,” Structure, vol. 19, no. 12, pp. 1796–1806, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. E. Banin, M. L. Vasil, and E. P. Greenberg, “Iron and Pseudomonas aeruginosa biofilm formation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 31, pp. 11076–11081, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. Y. Wang, J. C. Wilks, T. Danhorn, I. Ramos, L. Croal, and D. K. Newman, “Phenazine-1-carboxylic acid promotes bacterial biofilm development via ferrous iron acquisition,” Journal of Bacteriology, vol. 193, no. 14, pp. 3606–3617, 2011. View at Publisher · View at Google Scholar · View at Scopus