About this Journal Submit a Manuscript Table of Contents
ISRN Aerospace Engineering
Volume 2013 (2013), Article ID 320563, 8 pages
http://dx.doi.org/10.1155/2013/320563
Research Article

A Numerical and Experimental Study of the Aerodynamics and Stability of a Horizontal Parachute

1Department of Mechanical Engineering, I. A. University of Takestan, Takestan, Iran
2Department of Mechanical Engineering, Urmia University of Technology, Urmia, Iran
3Department of Mechanical Engineering, Urmia University, Urmia, Iran

Received 24 May 2013; Accepted 26 June 2013

Academic Editors: J. López-Puente and R. K. Sharma

Copyright © 2013 Mazyar Dawoodian et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Al Musleh and A. Frendi, “On the effects of a flexible structure on boundary layer stability and transition,” Journal of Fluids Engineering, vol. 133, no. 7, Article ID 071103, 6 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Natarajan and A. Acrivos, “The instability of the steady flow past spheres and disks,” Journal of Fluid Mechanics, vol. 254, pp. 323–344, 1993. View at Scopus
  3. H. Sakamoto and H. Haniu, “A study on vortex shedding from spheres in a uniform flow,” Journal of Fluids Engineering, vol. 112, no. 4, pp. 386–392, 1990. View at Scopus
  4. V. Bakic and M. Peric, “Visualization of flow around sphere for Reynolds numbers between 22,000 and 400,000,” Thermophysics and Aeromechanics, vol. 12, no. 3, pp. 307–315, 2005.
  5. H. V. Fuchs, E. Mercker, and U. Michel, “Large-scale coherent structures in the wake of axisymmetric bodies,” Journal of Fluid Mechanics, vol. 93, no. 1, pp. 185–207, 1979. View at Scopus
  6. E. Berger, D. Scholz, and M. Schumm, “Coherent vortex structures in thewake of a sphere and a circular disk at rest and under forced vibrations,” Journal of Fluids and Structures, vol. 4, no. 3, pp. 231–257, 1990. View at Scopus
  7. H. Higuchi, “Visual study on wakes behind solid and slotted axisymmetric bluff bodies,” Journal of Aircraft, vol. 28, no. 7, pp. 427–430, 1991. View at Publisher · View at Google Scholar · View at Scopus
  8. C. W. Peterson, J. H. Strickland, and H. Higuchi, “The fluid dynamics of parachute inflation,” Annual Review of Fluid Mechanics, vol. 28, pp. 361–387, 1996. View at Scopus
  9. A. Filippone, “On the flutter and drag forces on flexible rectangular canopies in normal flow,” Journal of Fluids Engineering, vol. 130, no. 6, Article ID 061203, 8 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. M. J. Izadi and M. Mohammadizadeh, “Numerical study of a hemi-spherical cup in steady, unsteady, laminar and turbulent flow conditions with a vent of air at the top,” Fluids Annual Review of Fluid Mechanics, vol. 28, pp. 361–387, 2008.
  11. M. J. Izadi and M. Dawoodian, “CFD analysis of drag coefficient of a parachute in steady and turbulent conditions in various Reynolds numbers,” in Proceedings of the Fluids Engineering Division Summer Conference (FEDSM '09), pp. 2285–2293, ASME, Colorado, Colo, USA, August 2009. View at Scopus
  12. K. Takizawa, S. Wright, C. Moorman, and T. E. Tezduyar, “Fluid-structure interaction modeling of parachute clusters,” International Journal for Numerical Methods in Fluids, vol. 65, no. 1–3, pp. 286–307, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Cao and C. Jiang, “Numerical simulation of the flow field around parachute during terminal descent,” Aircraft Engineering and Aerospace Technology, vol. 79, no. 3, pp. 268–272, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Cao and H. Xu, “Parachute flying physical model and inflation simulation analysis,” Aircraft Engineering and Aerospace Technology, vol. 76, no. 2, pp. 215–220, 2004. View at Scopus
  15. D. Ormières and M. Provansal, “Transition to turbulence in the wake of a sphere,” Physical Review Letters, vol. 83, no. 1, pp. 80–83, 1999. View at Scopus