About this Journal Submit a Manuscript Table of Contents
ISRN Algebra
Volume 2011 (2011), Article ID 247403, 11 pages
http://dx.doi.org/10.5402/2011/247403
Research Article

A New Proof of the Existence of Free Lie Algebras and an Application

Dipartimento di Matematica, Università degli Studi di Bologna, Piazza di Porta San Donato 5, 40126 Bologna, Italy

Received 23 March 2011; Accepted 20 April 2011

Academic Editors: K. Dekimpe and J. Kakol

Copyright © 2011 Andrea Bonfiglioli and Roberta Fulci. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Bourbaki, β€œÉléments de Mathématique, Fasc. XXXVII: Groupes et Algèbres de Lie, Chap. II: Algèbres de Lie, Chap. III: Groupes de Lie,” in Actualités Scientifiques et Industrielles, vol. 1349, Hermann, Paris, France, 1972.
  2. C. Reutenauer, Free Lie Algebras, vol. 7 of London Mathematical Society Monographs, Clarendon Press, Oxford, UK, 1993.
  3. N. Bourbaki, β€œÉléments de Mathématique, Fasc. XXVI: Groupes et Algèbres de Lie, Chap. I: Algèbres de Lie,” in Actualités Scientifiques et Industrielles, vol. 1285, Hermann, Paris, France, 1960.
  4. G. P. Hochschild, The Structure of Lie Groups, Holden-Day, San Francisco, Calif, USA, 1965.
  5. J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, vol. 9 of Graduate Texts in Mathematics, Springer, New York, NY, USA, 1980.
  6. N. Jacobson, Lie Algebras, vol. 10 of Interscience Tracts in Pure and Applied Mathematics, Interscience Publishers, John Wiley and Sons, New York, NY, USA, 1962.
  7. V. S. Varadarajan, Lie groups, Lie Algebras, and Their Representations, vol. 102 of Graduate Texts in Mathematics, Springer, New York, NY, USA, 1984.
  8. A. Bonfiglioli and R. Fulci, Topics in Noncommutative Algebra. The Theorem of Campbell, Baker, Hausdorff and Dynkin, Lecture Notes in Mathematics, Springer, Berlin, Germany, 2011.
  9. P. Cartier, β€œDémonstration algébrique de la formule de Hausdorff,” Bulletin de la Société Mathématique de France, vol. 84, pp. 241–249, 1956. View at Zentralblatt MATH
  10. J. P. Serre, Lie Algebras and Lie Groups, Lectures Given at Harvard University, W. A. Benjamin, New York, NY, USA, 1st edition, 1964.
  11. J. P. Serre, Lie Algebras and Lie Groups, vol. 1500 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, Germany, 2nd edition, 1965.
  12. F. Hausdorff, β€œDie symbolische exponentialformel in der gruppentheorie,” Leipzig Berichte, vol. 58, pp. 19–48, 1906.
  13. M. Eichler, β€œA new proof of the Baker-Campbell-Hausdorff formula,” Journal of the Mathematical Society of Japan, vol. 20, pp. 23–25, 1968. View at Publisher Β· View at Google Scholar Β· View at Zentralblatt MATH
  14. D. Ž. Djoković, β€œAn elementary proof of the Baker-Campbell-Hausdorff-Dynkin formula,” Mathematische Zeitschrift, vol. 143, no. 3, pp. 209–211, 1975. View at Publisher Β· View at Google Scholar Β· View at Zentralblatt MATH
  15. E. B. Dynkin, β€œCalculation of the coefficients in the Campbell-Hausdorff formula,” Doklady Akademii Nauk SSSR, vol. 57, pp. 323–326, 1947.
  16. W. Specht, β€œDie linearen Beziehungen zwischen höheren Kommutatoren,” Mathematische Zeitschrift, vol. 51, pp. 367–376, 1948. View at Publisher Β· View at Google Scholar Β· View at Zentralblatt MATH
  17. F. Wever, β€œOperatoren in lieschen ringen,” Journal für die Reine und Angewandte Mathematik, vol. 187, pp. 44–55, 1949. View at Zentralblatt MATH