About this Journal Submit a Manuscript Table of Contents
ISRN Analytical Chemistry
Volume 2013 (2013), Article ID 151464, 8 pages
http://dx.doi.org/10.1155/2013/151464
Research Article

Linear and Nonlinear QSAR Study of N2 and O6 Substituted Guanine Derivatives as Cyclin-Dependent Kinase 2 Inhibitors

Faculty of Chemistry, Shahrood University of Technology, P.O. Box 316, Shahrood 3619995161, Iran

Received 11 April 2013; Accepted 23 May 2013

Academic Editors: J. N. Latosinska and C. Y. Panicker

Copyright © 2013 Nasser Goudarzi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Norbury and P. Nurse, “Animal cell cycles and their control,” Annual Review of Biochemistry, vol. 61, pp. 441–470, 1992.
  2. D. O. Morgan, “Principles of CDK regulation,” Nature, vol. 374, no. 6518, pp. 131–134, 1995. View at Scopus
  3. M. Hall and G. Peters, “Genetic alterations of cyclins, cyclin-dependent kinases, and Cdk inhibitors in human cancer,” Advances in Cancer Research, vol. 68, pp. 67–108, 1996.
  4. T. M. Sielecki, J. F. Boylan, P. A. Benfield, and G. L. Trainor, “Cyclin-dependent kinase inhibitors: useful targets in cell cycle regulation,” Journal of Medicinal Chemistry, vol. 43, no. 1, pp. 1–18, 2000. View at Scopus
  5. N. Watanabe, M. Broome, and T. Hunter, “Regulation of the human WEE1Hu CDK tyrosine 15-kinase during the cell cycle,” EMBO Journal, vol. 14, no. 9, pp. 1878–1891, 1995. View at Scopus
  6. K. Coulonval, L. Bockstaele, S. Paternot, and P. P. Roger, “Phosphorylations of cyclin-dependent kinase 2 revisited using two-dimensional gel electrophoresis,” Journal of Biological Chemistry, vol. 278, no. 52, pp. 52052–52060, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. N. P. Pavletich, “Mechanisms of cyclin-dependent kinase regulation: structures of Cdks, their cyclin activators, and Cip and INK4 inhibitors,” Journal of Molecular Biology, vol. 287, pp. 821–828, 1999.
  8. M. D. Losiewicz, B. A. Carlson, G. Kaur, E. A. Sausville, and P. J. Worland, “Potent inhibition of Cdc2 kinase activity by the flavonoid L86-8275,” Biochemical and Biophysical Research Communications, vol. 201, no. 2, pp. 589–595, 1994. View at Publisher · View at Google Scholar · View at Scopus
  9. A. M. Senderowicz and E. A. Sausville, “Preclinical and clinical development of cyclin-dependent kinase modulators,” Journal of the National Cancer Institute, vol. 92, no. 5, pp. 376–387, 2000. View at Scopus
  10. I. R. Hardcastle, B. T. Golding, and R. J. Griffin, “Designing inhibitors of cyclin-dependent kinases,” Annual Review of Pharmacology and Toxicology, vol. 42, pp. 325–348, 2002.
  11. M. Knockaert, P. Greengard, and L. Meijer, “Pharmacological inhibitors of cyclin-dependent kinases,” Trends in Pharmacological Sciences, vol. 23, no. 9, pp. 417–425, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. P. L. Toogood, “Progress toward the development of agents to modulate the cell cycle,” Current Opinion in Chemical Biology, vol. 6, pp. 472–478, 2002.
  13. G. I. Shapiro, “Preclinical and clinical development of the cyclin-dependent kinase inhibitor flavopiridol,” Clinical Cancer Research, vol. 10, no. 12, pp. 4270s–4275s, 2004.
  14. M. Vieth, R. E. Higgs, D. H. Robertson, M. Shapiro, E. A. Gragg, and H. Hemmerle, “Kinomics—structural biology and chemogenomics of kinase inhibitors and targets,” Biochimica et Biophysica Acta, vol. 1697, no. 1-2, pp. 243–257, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Fernandez, A. Tundidor-Camba, and J. Caballero, “Modeling of cyclin-dependent kinase inhibition by 1H-pyrazolo[3,4-d]pyrimidine derivatives using artificial neural network ensembles,” Journal of Chemical Information and Modeling, vol. 45, no. 6, pp. 1884–1895, 2005.
  16. M. P. Gonzalez, J. Caballero, A. M. Helguera, M. Garriga, G. Gonzalez, and M. Fernandez, “2D autocorrelation modelling of the inhibitory activity of cytokinin-derived cyclin-dependent kinase inhibitors,” Bulletin of Mathematical Biology, vol. 68, no. 4, pp. 735–751, 2006.
  17. H. Dureja and A. K. Madan, “Topochemical models for prediction of cyclin-dependent kinase 2 inhibitory activity of indole-2-ones,” Journal of Molecular Modeling, vol. 11, no. 6, pp. 525–531, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Z. Li, H. X. Liu, X. J. Yao, M. C. Liu, Z. D. Hu, and B. T. Fan, “Structure-activity relationship study of oxindole-based inhibitors of cyclin-dependent kinases based on least-squares support vector machines,” Analytica Chimica Acta, vol. 581, pp. 333–342, 2007.
  19. S. Samanta, B. Debnath, A. Basu, S. Gayen, K. Srikanth, and T. Jha, “Exploring QSAR on 3-aminopyrazoles as antitumor agents for their inhibitory activity of CDK2/cyclin A,” European Journal of Medicinal Chemistry, vol. 41, no. 10, pp. 1190–1195, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Goodarzi and M. P. Freitas, “Predicting boiling points of aliphatic alcohols through multivariate image analysis applied to quantitative structure-property relationships,” Journal of Physical Chemistry A, vol. 112, no. 44, pp. 11263–11265, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Goodarzi and M. P. Freitas, “Augmented three-mode MIA-QSAR modeling for a series of anti-HIV-1 compounds,” QSAR and Combinatorial Science, vol. 27, no. 9, pp. 1092–1097, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Goodarzi, T. Goodarzi, and N. Ghasemi, “Spectrophotometric simultaneous determination of manganese(ii) and iron(ii) in pharmaceutical by orthogonal signal correction-partial least squares,” Annali di Chimica, vol. 97, no. 5-6, pp. 303–312, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Goudarzi, M. H. Fatemi, and A. Samadi-Maybodi, “Quantitative structure-properties relationship study of the 29Si-NMR chemical shifts of some silicate species,” Spectroscopy Letters, vol. 42, no. 4, pp. 186–193, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. N. Goudarzi and M. Goodarzi, “Prediction of the logarithmic of partition coefficients (log P) of some organic compounds byleast square-support vector machine (LS-SVM),” Molecular Physics, vol. 106, pp. 2525–2535, 2008. View at Publisher · View at Google Scholar
  25. N. Goudarzi and M. Goodarzi, “Prediction of the acidic dissociation constant (pKa) of some organic compounds using linear and nonlinear QSPR methods,” Molecular Physics, vol. 107, no. 14, pp. 1495–1503, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. N. Goudarzi and M. Goodarzi, “Prediction of the vapor pressure of some halogenated methyl-phenyl ether (anisole) compounds using linear and nonlinear QSPR methods,” Molecular Physics, vol. 107, no. 15, pp. 1615–1620, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. N. Goudarzi and M. Goodarzi, “QSPR models for prediction of half wave potentials of some chlorinated organic compounds using SR-PLS and GA-PLS methods,” Molecular Physics, vol. 107, pp. 1739–1744, 2009.
  28. Z. Elmi, K. Faez, M. Goodarzi, and N. Goudarzi, “Feature selection method based on fuzzy entropy for regression in QSAR studies,” Molecular Physics, vol. 107, no. 17, pp. 1787–1798, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. N. Goudarzi, M. Goodarzi, M. C. U. Araujo, and R. K. H. Galvao, “QSPR modeling of soil sorption coefficients (KOC) of pesticides usingSPA-ANN and SPA-MLR,” Journal of Agricultural and Food Chemistry, vol. 57, pp. 7153–7158, 2009.
  30. N. Goudarzi, M. Goodarzi, and M. Arab Chamjangali, “Prediction of inhibition effect of some aliphatic and aromatic organic compounds using QSAR method,” Journal of Environmental Chemistry and Ecotoxicology, vol. 2, pp. 47–50, 2010.
  31. N. Trinajstic, Chemical Graph Theory, CRC Press, Boca Raton, Fla, USA, 1992.
  32. A. R. Katritzky, V. S. Lobanov, and M. Karelson, “QSPR: the correlation and quantitative prediction of chemical and physical properties from structure,” Chemical Society Reviews, vol. 24, no. 4, pp. 279–287, 1995. View at Scopus
  33. N. R. Draper and H. Smith, Applied Regression Analysis, Wiley Series in Probability and Statistics, New York, NY, USA, 1998.
  34. J. Zupan and J. Gasteiger, Neural Networks in Chemistry and Drug Design, Wiley-VCH, Weinheim, Germany, 1999.
  35. N. K. Bose and P. Liang, Neural Networks, Fundamentals, McGraw-Hill, New York, NY, USA, 1996.
  36. J. H. Alzate-Morales, J. Caballero, A. Vergara Jague, and F. D. Gonzalez, “Insights into the structural basis of N2 and O6 substituted guanine derivatives as cyclin-dependent kinase 2 (CDK2) inhibitors: prediction of the binding modes and potency of the inhibitors by docking and ONIOM calculations,” Journal of Chemical Information and Modeling, vol. 49, no. 4, pp. 886–899, 2009. View at Publisher · View at Google Scholar
  37. HyperChem Release 7, HyperCube, Inc., http://www.hyper.com.
  38. R. Todeschini, Milano Chemometrics and QSPR Group, http://michem.disat.unimib.it/chm/staff/staff.htm.
  39. SPSS for windows Statistical package for IBM PC, SPSS Inc., http://www.spss.com.