About this Journal Submit a Manuscript Table of Contents
ISRN Analytical Chemistry
Volume 2013 (2013), Article ID 210470, 9 pages
http://dx.doi.org/10.1155/2013/210470
Research Article

Sumac Leaves as a Novel Low-Cost Adsorbent for Removal of Basic Dye from Aqueous Solution

Chemistry Department, Yildiz Technical University, 34220 Esenler, Istanbul, Turkey

Received 21 August 2013; Accepted 26 September 2013

Academic Editors: J. J. Santana-Rodríguez and N. Viswanathan

Copyright © 2013 Öznur Dülger et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Sivaraj, C. Namasivayam, and K. Kadirvelu, “Orange peel as an adsorbent in the removal of Acid violet 17 (acid dye) from aqueous solutions,” Waste Management, vol. 21, no. 1, pp. 105–110, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. S. P. Raghuvanshi, R. Singh, and C. P. Kaushik, “Adsorption of congo red dye from aqueous solutions using neem leaves as adsorbent,” Asian Journal of Chemistry, vol. 20, no. 7, pp. 4994–5000, 2008. View at Scopus
  3. A. S. ALzaydien, “Adsorption of methylene blue from aqueous solution onto a low-cost natural jordanian tripoli,” American Journal of Environmental Sciences, vol. 5, no. 3, pp. 197–208, 2009. View at Scopus
  4. K. G. Bhattacharya and A. Sharma, “Kinetics and thermodynamics of Methylene Blue adsorption on Neem (Azadirachta indica) leaf powder,” Dyes and Pigments, vol. 65, no. 1, pp. 51–59, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Chowdhury and P. D. Saha, “Biosorption of methylene blue from aqueous solutions by a waste biomaterial: hen feathers,” Applied Water Science, vol. 2, pp. 209–219, 2012.
  6. K. V. Kumar, “Optimum sorption isotherm by linear and non-linear methods for malachite green onto lemon peel,” Dyes and Pigments, vol. 74, no. 3, pp. 595–597, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Senthilkumaar, P. R. Varadarajan, K. Porkodi, and C. V. Subbhuraam, “Adsorption of methylene blue onto jute fiber carbon: kinetics and equilibrium studies,” Journal of Colloid and Interface Science, vol. 284, no. 1, pp. 78–82, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. B. H. Hameed and A. A. Ahmad, “Batch adsorption of methylene blue from aqueous solution by garlic peel, an agricultural waste biomass,” Journal of Hazardous Materials, vol. 164, no. 2-3, pp. 870–875, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. M. C. Ncibi, B. Mahjoub, and M. Seffen, “Kinetic and equilibrium studies of methylene blue biosorption by Posidonia oceanica (L.) fibres,” Journal of Hazardous Materials, vol. 139, no. 2, pp. 280–285, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Palma, J. Freer, and J. Baeza, “Removal of metal ions by modified Pinus radiata bark and tannins from water solutions,” Water Research, vol. 37, no. 20, pp. 4974–4980, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Özacar, C. Soykan, and I. A. Şengil, “Studies on synthesis, characterization, and metal adsorption of mimosa and valonia tannin resins,” Journal of Applied Polymer Science, vol. 102, no. 1, pp. 786–797, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Zalacain, M. Prodanov, M. Carmona, and G. L. Alonso, “Optimisation of extraction and identification of gallotannins from sumac leaves,” Biosystems Engineering, vol. 84, no. 2, pp. 211–216, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Uçer, A. Uyanık, and F. Ş. Aygün, “Adsorption of Cu(II), Cd(II), Zn(II), Mn(II) and Fe(III) ions by tannic acid immobilized activated carbon,” Seperation and Purification Technology, vol. 47, pp. 113–118, 2006.
  14. P. Waranusantigul, P. Pokethitiyook, M. Kruatrachue, and E. S. Upatham, “Kinetics of basic dye (methylene blue) biosorption by giant duckweed (Spirodela polyrrhiza),” Environmental Pollution, vol. 125, no. 3, pp. 385–392, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Tien, Adsorption Calculations and Modeling, Butterworth-Heinemann, Boston, Mass, USA, 1994.
  16. G. Crini, H. N. Peindy, F. Gimbert, and C. Robert, “Removal of C.I. Basic Green 4 (Malachite Green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: kinetic and equilibrium studies,” Separation and Purification Technology, vol. 53, no. 1, pp. 97–110, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Limousin, J.-P. Gaudet, L. Charlet, S. Szenknect, V. Barthès, and M. Krimissa, “Sorption isotherms: a review on physical bases, modeling and measurement,” Applied Geochemistry, vol. 22, no. 2, pp. 249–275, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. G. Alberti, V. Amendola, M. Pesavento, and R. Biesuz, “Beyond the synthesis of novel solid phases: review on modelling of sorption phenomena,” Coordination Chemistry Reviews, vol. 256, no. 1-2, pp. 28–45, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. T. W. Weber and R. K. Chakravorti, “Pore and solid diffusion models for fixed-bed adsorbers,” Journal of American Institute of Chemical Engineers, vol. 20, no. 2, pp. 228–238, 1974. View at Scopus
  20. T. B. Iyim and G. Güçlü, “Removal of basic dyes from aqueous solutions using natural clay,” Desalination, vol. 249, no. 3, pp. 1377–1379, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Lagergren, “About the theory of so-called adsorption of soluble substances,” Kungliga Svenska Vetenskapsakademies Handlingar, vol. 24, no. 4, pp. 1–39, 1898.
  22. Y. S. Ho and G. McKay, “A Comparison of chemisorption kinetic models applied to pollutant removal on various sorbents,” Process Safety and Environmental Protection, vol. 76, no. 4, pp. 332–340, 1998. View at Scopus
  23. W. J. Weber and J. C. Morris, “Kinetics of adsorption on carbon from solution,” Journal of the Sanitary Engineering Division, vol. 89, pp. 31–59, 1963.
  24. N. Kannan and M. M. Sundaram, “Kinetics and mechanism of removal of methylene blue by adsorption on various carbons—a comparative study,” Dyes and Pigments, vol. 51, no. 1, pp. 25–40, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Karagöz, T. Tay, S. Uçar, and M. Erdem, “Activated carbons from waste biomass by sulfuric acid activation and their use on methylene blue adsorption,” Bioresource Technology, vol. 99, no. 14, pp. 6214–6222, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. B. H. Hameed, R. R. Krishni, and S. A. Sata, “A novel agricultural waste adsorbent for the removal of cationic dye from aqueous solutions,” Journal of Hazardous Materials, vol. 162, no. 1, pp. 305–311, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. E. N. El Qada, S. J. Allen, and G. M. Walker, “Adsorption of basic dyes onto activated carbon using microcolumns,” Industrial and Engineering Chemistry Research, vol. 45, no. 17, pp. 6044–6049, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. B. H. Hameed, A. T. M. Din, and A. L. Ahmad, “Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies,” Journal of Hazardous Materials, vol. 141, no. 3, pp. 819–825, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. W. F. Jaynes and S. A. Boyd, “Hydrophobicity of siloxane surfaces in smectites as revealed by aromatic hydrocarbon adsorption from water,” Clays & Clay Minerals, vol. 39, no. 4, pp. 428–436, 1991. View at Scopus
  30. P. Saha, “Assessment on the removal of methylene blue dye using tamarind fruit shell as biosorbent,” Water, Air, and Soil Pollution, vol. 213, no. 1–4, pp. 287–299, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. B. H. Hameed, D. K. Mahmoud, and A. L. Ahmad, “Equilibrium modeling and kinetic studies on the adsorption of basic dye by a low-cost adsorbent: coconut (Cocos nucifera) bunch waste,” Journal of Hazardous Materials, vol. 158, no. 1, pp. 65–72, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. S. Ho and G. McKay, “Pseudo-second order model for sorption processes,” Process Biochemistry, vol. 34, no. 5, pp. 451–465, 1999. View at Publisher · View at Google Scholar · View at Scopus
  33. W. H. Cheung, Y. S. Szeto, and G. McKay, “Intraparticle diffusion processes during acid dye adsorption onto chitosan,” Bioresource Technology, vol. 98, no. 15, pp. 2897–2904, 2007. View at Publisher · View at Google Scholar · View at Scopus