About this Journal Submit a Manuscript Table of Contents
ISRN Analytical Chemistry
Volume 2013 (2013), Article ID 391053, 5 pages
http://dx.doi.org/10.1155/2013/391053
Research Article

Determination of the Binding Parameters between Proteins and Luminol by Chemiluminescence Using Flow Injection Technique

Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Material Science, Northwest University, Xi'an 710069, China

Received 8 April 2013; Accepted 16 May 2013

Academic Editors: Z. Arslan and K. Ohyama

Copyright © 2013 Jie Guo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Teilum, J. G. Olsen, and B. B. Kragelund, “Functional aspects of protein flexibility,” Cellular and Molecular Life Sciences, vol. 66, no. 14, pp. 2231–2247, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Dhar, K. Girdhar, D. Singh, H. Gelman, S. Ebbinghaus, and M. Gruebele, “Protein stability and folding kinetics in the nucleus and endoplasmic reticulum of Eucaryotic Cells,” Biophysical Journal, vol. 101, no. 2, pp. 421–430, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Paramaguru, A. Kathiravan, S. Selvaraj, P. Venuvanalingam, and R. Renganathan, “Interaction of anthraquinone dyes with lysozyme: evidences from spectroscopic and docking studies,” Journal of Hazardous Materials, vol. 175, no. 1–3, pp. 985–991, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. R. J. Pantazes, M. J. Grisewood, and C. D. Maranas, “Recent advances in computational protein design,” Current Opinion in Structural Biology, vol. 21, no. 4, pp. 467–472, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. H. M. Zhang, J. Chen, Q. H. Zhou, Y. Q. Shi, and Y. Q. Wang, “Study on the interaction between cinnamic acid and lysozyme,” Journal of Molecular Structure, vol. 987, no. 1–3, pp. 7–12, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. N. Shahabadi and M. Mohammadpour, “Study on the interaction of sodium morin-5-sulfonate with bovine serum albumin by spectroscopic techniques,” Spectrochimica Acta A, vol. 86, pp. 191–195, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. W. Du, T. Teng, C. C. Zhou, L. Xi, and J. Z. Wang, “Spectroscopic studies on the interaction of bovine serum albumin with ginkgolic acid: binding characteristics and structural analysis,” Journal of Luminescence, vol. 132, no. 5, pp. 1207–1214, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. G. W. Zhang, N. Zhao, X. Hu, and J. Tian, “Interaction of alpinetin with bovine serum albumin: probing of the mechanism and binding site by spectroscopic methods,” Spectrochimica Acta A, vol. 76, no. 3-4, pp. 410–417, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. W. P. Wang, W. A. Min, J. R. Chen, X. H. Wu, and Z. D. Hu, “Binding study of diprophylline with lysozyme by spectroscopic methods,” Journal of Luminescence, vol. 131, no. 4, pp. 820–824, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Ganini, M. Christoff, M. Ehrenshaft, M. B. Kadiiska, R. P. Mason, and E. J. H. Bechara, “Myoglobin-H2O2 catalyzes the oxidation of β-ketoacids to α-dicarbonyls: mechanism and implications in ketosis,” Free Radical Biology and Medicine, vol. 51, no. 3, pp. 733–743, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. M. I. González-Sánchez, F. García-Carmona, H. Macià, and E. Valero, “Catalase-like activity of human methemoglobin: a kinetic and mechanistic study,” Archives of Biochemistry and Biophysics, vol. 516, no. 1, pp. 10–20, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. N. S. Moyon and S. Mitra, “Luminol fluorescence quenching in biomimicking environments: sequestration of fluorophore in hydrophobic domain,” Journal of Physical Chemistry B, vol. 115, no. 33, pp. 10163–10172, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. J. B. Xiao, J. W. Chen, H. Cao, and F. L. Ren, “Study of the interaction between baicalin and bovine serum albumin by multi-spectroscopic method,” Journal of Photochemistry and Photobiology A, vol. 191, no. 2-3, pp. 222–227, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Banerjee, S. K. Singh, and N. Kishore, “Binding of naproxen and amitriptyline to bovine serum albumin: biophysical aspects,” Journal of Physical Chemistry B, vol. 110, no. 47, pp. 24147–24156, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. B. L. Cao, S. Endsley, and N. H. Andersen, “19F NMR studies of tryptophan/serum albumin binding,” Bioorganic and Medicinal Chemistry, vol. 11, no. 1, pp. 69–75, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. M. Huang, Z. Z. Zhang, D. J. Zhang, and J. D. Lv, “Flow-injection analysis chemiluminescence detection combined with microdialysis sampling for studying protein binding of drug,” Talanta, vol. 53, no. 4, pp. 835–841, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Kulmala and J. Suomi, “Current status of modern analytical luminescence methods,” Analytica Chimica Acta, vol. 500, no. 1-2, pp. 21–69, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. X. Wang, J. M. Lin, M. L. Liu, and X. L. Cheng, “Flow-based luminescence-sensing methods for environmental water analysis,” Trends in Analytical Chemistry, vol. 28, no. 1, pp. 75–87, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. M. C. Icardo and J. M. Calatayud, “Photo-induced luminescence,” Critical Reviews in Analytical Chemistry, vol. 38, no. 2, pp. 118–130, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. E. H. White, O. Zafiriou, H. H. Kägi, and J. H. M. Hill, “Chemiluminescence of luminol: the chemical reaction,” Journal of the American Chemical Society, vol. 86, no. 5, pp. 940–941, 1964. View at Scopus
  21. J. M. Sanders, L. J. Chen, L. T. Burka, and H. B. Matthews, “Metabolism and disposition of luminol in the rat,” Xenobiotica, vol. 30, no. 3, pp. 263–272, 2000. View at Scopus
  22. S. Irie, “The treatment of alopecia areata with 3-aminophthal-hydrazide,” Current Therapeutic Research, Clinical and Experimental, vol. 2, no. 3, pp. 107–110, 1960. View at Scopus
  23. S. Irie, “Influence of 3-aminophthalhydrazide on the prothrombin time,” Current Therapeutic Research, Clinical and Experimental, vol. 2, no. 5, pp. 153–157, 1960. View at Scopus
  24. S. Irie, “The treatment of wounds with 3-aminophthalhydrazide,” The American surgeon, vol. 27, pp. 642–645, 1961. View at Scopus
  25. H. Zhang, T. Shibata, T. Krawczyk et al., “Facile detection of proteins on a solid-phase membrane by direct binding of dextran-based luminol-biotin chemiluminescent polymer,” Talanta, vol. 79, no. 3, pp. 700–705, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Bi, H. Zhou, and S. Zhang, “Multilayers enzyme-coated carbon nanotubes as biolabel for ultrasensitive chemiluminescence immunoassay of cancer biomarker,” Biosensors and Bioelectronics, vol. 24, no. 10, pp. 2961–2966, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Mervartová, M. Polášek, and J. M. Calatayud, “Recent applications of flow-injection and sequential-injection analysis techniques to chemiluminescence determination of pharmaceuticals,” Journal of Pharmaceutical and Biomedical Analysis, vol. 45, no. 3, pp. 367–381, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. A. R. Bowie, M. G. Sanders, and P. J. Worsfold, “Analytical applications of liquid phase chemiluminescence reactions—a review,” Journal of Bioluminescence and Chemiluminescence, vol. 11, no. 2, pp. 61–90, 1996. View at Scopus
  29. N. S. Moyon and S. Mitra, “On the interaction of luminol with human serum albumin: nature and thermodynamics of ligand binding,” Chemical Physics Letters, vol. 498, no. 1–3, pp. 178–183, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. X. J. Tan, Z. H. Song, D. H. Chen, and Z. M. Wang, “Study on the chemiluminescence behavior of bovine serum albumin with luminol and its analytical application,” Spectrochimica Acta A, vol. 79, no. 1, pp. 232–235, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. D. H. Chen and Z. H. Song, “In vitro monitoring of picogram levels of risperidone in human urine via luminollysozyme flow injection chemiluminescence,” Microchimica Acta, vol. 171, no. 3-4, pp. 437–440, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. Z. M. Wang, D. H. Chen, X. Gao, and Z. H. Song, “Subpicogram determination of melamine in milk products using a luminol-myoglobin chemiluminescence system,” Journal of Agricultural and Food Chemistry, vol. 57, no. 9, pp. 3464–3469, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. D. H. Chen, Z. M. Wang, Y. Zhang, X. Y. Xiong, and Z. H. Song, “Study on the interaction behavior of catalase with cephalosporins by chemiluminescence with flow injection analysis,” Analytical Methods, vol. 4, no. 6, pp. 1485–1487, 2012.
  34. G. Scatchard, “The attraction of proteins for small molecules and ions,” Annals of the New York Academy of Sciences, vol. 51, pp. 660–672, 1949.
  35. A. A. Spector, J. E. Fletcher, and J. D. Ashbrook, “Analysis of long-chain free fatty acid binding to bovine serum albumin by determination of stepwise equilibrium constants,” Biochemistry, vol. 10, no. 17, pp. 3229–3232, 1971. View at Scopus
  36. P. D. Ross and S. Subramanian, “Thermodynamics of protein association reactions: forces contributing to stability,” Biochemistry, vol. 20, no. 11, pp. 3096–3102, 1981. View at Scopus