About this Journal Submit a Manuscript Table of Contents
ISRN Analytical Chemistry
Volume 2013 (2013), Article ID 548296, 9 pages
http://dx.doi.org/10.1155/2013/548296
Research Article

Methods for the Evaluation of Polyphenolic Content in “Uva Di Troia Canosina” Grape and Seeds at the Different Maceration Stages

1Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milano, Italy
2Farmalabor Srl, Via Pozzillo ZI, 76012 Canosa di Puglia, Italy
3SIAN ASL BT, Piazza Umberto I n°9, 76012 Canosa di Puglia (BT), Italy
4CRA—Research Unit for Viticulture and Enology in Southern Italy, Experimental Cellar of Barletta, Via Vittorio Veneto 26, 76121 Barletta, Italy

Received 8 April 2013; Accepted 30 April 2013

Academic Editors: A. Amine and T. Garcia Barrera

Copyright © 2013 Daria Catalano et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Suriano, L. Tarricone, M. Savino, and M. R. Rossi, “Caratterizzazione fenolica di Uve di Aglianico e Uva di Troia coltivate nel nord barese,” L'enologo, vol. 41, no. 12, pp. 71–80, 2005.
  2. I. Nicoletti, C. Bello, A. de Rossi, and D. Corradini, “Identification and quantification of phenolic compounds in grapes by HPLC-PDA-ESI-MS on a semimicro separation scale,” Journal of Agricultural and Food Chemistry, vol. 56, no. 19, pp. 8801–8808, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Muñoz, M. Mestres, O. Busto, and J. Guasch, “Determination of some flavan-3-ols and anthocyanins in red grape seed and skin extracts by HPLC-DAD: validation study and response comparison of different standards,” Analytica Chimica Acta, vol. 628, no. 1, pp. 104–110, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Cavaliere, P. Foglia, R. Gubbiotti, P. Sacchetti, R. Samperi, and A. Laganà, “Rapid-resolution liquid chromatography/mass spectrometry for determination and quantitation of polyphenols in grape berries,” Rapid Communications in Mass Spectrometry, vol. 22, no. 20, pp. 3089–3099, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Mané, J. M. Souquet, D. Ollé et al., “Optimization of simultaneous flavanol, phenolic acid, and anthocyanin extraction from grapes using an experimental design: application to the characterization of champagne grape varieties,” Journal of Agricultural and Food Chemistry, vol. 55, no. 18, pp. 7224–7233, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Gómez-Alonso, E. García-Romero, and I. Hermosín-Gutiérrez, “HPLC analysis of diverse grape and wine phenolics using direct injection and multidetection by DAD and fluorescence,” Journal of Food Composition and Analysis, vol. 20, pp. 618–626, 2007. View at Publisher · View at Google Scholar
  7. R. Maffei Facino, M. Carini, G. Aldini, E. Bombardelli, P. Morazzoni, and R. Morelli, “Free radicals scavenging action and anti-enzyme activities of procyanidines from Vitis vinifera. A mechanism for their capillary protective action,” Drug Research, vol. 44, no. 5, pp. 592–601, 1994. View at Scopus
  8. M. Carini, R. Stefani, G. Aldini, M. Ozioli, and R. M. Facino, “Procyanidins from Vitis vinifera seeds inhibit the respiratory burst of activated human neutrophils and lysosomal enzyme release,” Planta Medica, vol. 67, no. 8, pp. 714–717, 2001. View at Scopus
  9. G. Aldini, M. Carini, A. Piccoli, G. Rossoni, and R. M. Facino, “Procyanidins from grape seeds protect endothelial cells from peroxynitrite damage and enhance endothelium-dependent relaxation in human artery: new evidences for cardio-protection,” Life Sciences, vol. 73, no. 22, pp. 2883–2898, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. A. L. Waterhouse, “Wine phenolics,” Annals of the New York Academy of Sciences, vol. 957, pp. 21–36, 2002. View at Scopus
  11. E. Karvela, D. P. Makris, N. Kalogeropoulos, and V. T. Karathanos, “Deployment of response surface methodology to optimise recovery of grape (Vitis vinifera) stem polyphenols,” Talanta, vol. 79, no. 5, pp. 1311–1321, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Lorrain, I. Ky, L. Pechamat, and P. L. Teissedre, “Evolution of analysis of polyphenols from grapes, wines, and extracts,” Molecules, vol. 18, pp. 1076–1100, 2013. View at Publisher · View at Google Scholar
  13. Z. Y. Ju and L. R. Howard, “Effects of solvent and temperature on pressurized liquid extraction of anthocyanins and total phenolics from dried red grape skin,” Journal of Agricultural and Food Chemistry, vol. 51, no. 18, pp. 5207–5213, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Flamini, “Mass spectrometry in grape and wine chemistry. Part I: polyphenols,” Mass Spectrometry Reviews, vol. 22, no. 4, pp. 218–250, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. Z. Liang, M. Sang, P. Fan et al., “CIELAB coordinates in response to berry skin anthocyanins and their composition in vitis,” Journal of Food Science, vol. 76, no. 3, pp. C490–C497, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. B. Sun, A. C. Neves, T. A. Fernandes et al., “Evolution of phenolic composition of red wine during vinification and storage and its contribution to wine sensory properties and antioxidant activity,” Journal of Agricultural and Food Chemistry, vol. 59, no. 12, pp. 6550–6557, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Bucić-Kojić, M. Planinić, S. Tomas, M. Bilić, and D. Velić, “Study of solid-liquid extraction kinetics of total polyphenols from grape seeds,” Journal of Food Engineering, vol. 81, pp. 236–242, 2007.
  18. Y. Yang and M. Chien, “Characterization of grape procyanidins using high-performance liquid chromatography/mass spectrometry and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry,” Journal of Agricultural and Food Chemistry, vol. 48, no. 9, pp. 3990–3996, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. S. A. Schou, “Uber die lichtabsorption einiger anthocyanidine,” Helvetica Chimica Acta, vol. 10, pp. 907–915, 1927. View at Publisher · View at Google Scholar
  20. B. Gabetta, N. Fuzzati, A. Griffini et al., “Characterization of proanthocyanidins from grape seeds,” Fitoterapia, vol. 71, no. 2, pp. 162–175, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Manfra, M. de Nisco, A. Bolognese et al., “Anthocyanin composition and extractability in berry skin and wine of Vitis vinifera L. cv. Aglianico,” Journal of the Science of Food and Agriculture, vol. 91, pp. 2749–2755, 2011. View at Publisher · View at Google Scholar
  22. P. Kneknopoulos, G. K. Skouroumounis, Y. Hayasaka, and D. K. Taylor, “New phenolic grape skin products from Vitis vinifera cv. Pinot noir,” Journal of Agricultural and Food Chemistry, vol. 59, no. 3, pp. 1005–1011, 2011. View at Publisher · View at Google Scholar · View at Scopus